Flavored jets on LHCb

Ezra D. Lesser (CERN) on behalf of the LHCb Collaboration 11 June 2024

Flavored jets at the LHC // Durham, England, UK

b-quark production at the LHC

- No inherent *b*-quark component in the proton wavefunction
 - → Prominent LO production is: $gg \rightarrow b\overline{b}, \qquad q\overline{q} \rightarrow b\overline{b}$

2

b-quark production at the LHC

- No inherent *b*-quark component in the proton wavefunction
 - → Prominent LO production is: $gg \rightarrow b\overline{b}, \qquad q\overline{q} \rightarrow b\overline{b}$
- The gluons are frequently largely asymmetric in their momentum

b-quark production at the LHC

- No inherent *b*-quark component in the proton wavefunction
 - → Prominent LO production is: $gg \to b\overline{b}, \qquad q\overline{q} \to b\overline{b}$
- The gluons are frequently largely asymmetric in their momentum
- *bb* pairs are predominantly produced at small angles from the beam direction

A different kind of jet detector...

A different kind of jet detector...

5m

• LHCb is a completely forward detector $(2 < \eta < 5)$

Interaction Point (IP)

- LHC beampipe opened(!) for silicon tracking detectors to be placed closer to the beam
- Excellent primary vertex resolution of \sim 10 (transverse directions x, y) / \sim 40 (z) μ m

A different kind of jet detector...

Public meeting on flavor algorithms

• Many thanks to **Rene Poncelet**, **Daniel Reichelt**, **Andrew Larkoski**, **Giovanni Stagnitto**, and **Ludo Scyboz** for the excellent presentations!

- Indico link: <u>https://indico.cern.ch/event/LHCb-jet-flavor</u>
 - Recording of the event is available

- e.g., $B^{\pm} \rightarrow (J/\psi \rightarrow \mu^{+}\mu^{-}) K^{\pm}$
- Minimal bias on the reconstructed HF-hadron candidates

- e.g., $B^{\pm} \rightarrow (J/\psi \rightarrow \mu^{+}\mu^{-}) K^{\pm}$
- Minimal bias on the reconstructed HF-hadron candidates
- 2) Reconstructing secondary vertices (SVs)
 - Build SV from tracks which are displaced from the primary vertex (PV)

- e.g., $B^{\pm} \rightarrow (J/\psi \rightarrow \mu^{+}\mu^{-}) K^{\pm}$
- Minimal bias on the reconstructed HF-hadron candidates
- 2) Reconstructing **secondary vertices (SVs)**
 - Build SV from tracks which are displaced from the primary vertex (PV)

 Several dedicated hadronic triggers for high-statistics jet measurements containing a wide variety of hadrons

 Several dedicated hadronic triggers for high-statistics jet measurements containing a wide variety of hadrons

Decay search

Head (exactly): 🔻	B^+ X V	Contains (all of): ▼	D^0 ×	×	~]	Show only selected:	:	
Tags (none of): 🔻	undefined-unstable × charge-violating × lepton-flavour-violating ×	× v	Stripping line				 	
$\Box \begin{array}{c} B^+ \rightarrow 0 \\ \textbf{2 Strippin} \end{array}$	$\overline{D}^0 o K^+ \pi^- (\pi^0 o \gamma \gamma)) \pi^+$ g lines							
$B^+ ightarrow 0$ 3 Strippin	$(\overline{D}^0 o K^+ \pi^- \pi^- \pi^+) \pi^+$ g lines			"Ntuple	e '	Wizar	ď	' for selecting decay(s)
$\begin{tabular}{ c c c } \hline \begin{tabular}{ $	$(\overline{D}^0 o K^+ \pi^-) \pi^+$ g lines			• Will b	e	availa	ab	le for LHCb open data
$igsquare$ $B^+ ightarrow ($ 2 Strippin	$(\overline{D}^0 o K^- K^+ (\pi^0 o \gamma \gamma)) \pi^+$ g lines			• Curre	nt	ly in c	alp	oha testing (internal)
$igsquare$ $B^+ ightarrow (2 \ Strippin)$	$(\overline{D}^0 ightarrow K^- K^+ K^+ \pi^-) \pi^+$ g lines							
$\Box \begin{array}{c} B^+ \rightarrow 0 \\ \textbf{3 Strippin} \end{array}$	$\overline{D}^0 o K^- K^+ \pi^- \pi^+) \pi^+$ g lines							

- Several dedicated hadronic triggers for high-statistics jet measurements containing a wide variety of hadrons
- Some previous/more ongoing LHCb measurements use this approach

- Several dedicated hadronic triggers for high-statistics jet measurements containing a wide variety of hadrons
- Some previous/more ongoing LHCb measurements use this approach
- Possibility to reconstruct multiple decay channels at once

• E.g.,
$$B^{\pm} \to (J/\psi \to \mu^+ \mu^-) K^{\pm}$$
 plus $B^{\pm} \to (D^0 \to K^{\pm} \pi^{\mp}) \pi^{\pm}$

- Several dedicated hadronic triggers for high-statistics jet measurements containing a wide variety of hadrons
- Some previous/more ongoing LHCb measurements use this approach
- Possibility to reconstruct multiple decay channels at once
 - E.g., $B^{\pm} \to (J/\psi \to \mu^+ \mu^-) K^{\pm}$ plus $B^{\pm} \to (D^0 \to K^{\pm} \pi^{\mp}) \pi^{\pm}$
- Very difficult to reconstruct all HF hadrons through all decay channels
 - Correcting for gluon splitting jets in the new algorithms will require large purity corrections, estimated from MC models

• Use Pythia 8 with HardQCD:all=on (enabling all $2 \rightarrow 2$ matrix elements)

- Use Pythia 8 with HardQCD:all=on (enabling all $2 \rightarrow 2$ matrix elements)
- Check at parton level for at least one c quark after the shower
 - c quark required to be within $1 < |\eta| < 6$ (for hadrons, $2 < |\eta_{LHCb}| < 5$)

- Use Pythia 8 with HardQCD:all=on (enabling all $2 \rightarrow 2$ matrix elements)
- Check at parton level for at least one c quark after the shower
 - c quark required to be within $1 < |\eta| < 6$ (for hadrons, $2 < |\eta_{LHCb}| < 5$)
- Repeat hadronization until a D^0 is produced in the event (max attempts = 10)

- Use Pythia 8 with HardQCD:all=on (enabling all $2 \rightarrow 2$ matrix elements)
- Check at parton level for at least one c quark after the shower
 - c quark required to be within $1 < |\eta| < 6$ (for hadrons, $2 < |\eta_{LHCb}| < 5$)
- Repeat hadronization until a D^0 is produced in the event (max attempts = 10)
- Force all $D^0 \rightarrow K^{\pm} \pi^{\mp}$ (421:onMode = off, 421:onIfMatch = 321 211)

- Use Pythia 8 with HardQCD:all=on (enabling all $2 \rightarrow 2$ matrix elements)
- Check at parton level for at least one c quark after the shower
 - c quark required to be within $1 < |\eta| < 6$ (for hadrons, $2 < |\eta_{LHCb}| < 5$)
- Repeat hadronization until a D^0 is produced in the event (max attempts = 10)
- Force all $D^0 \rightarrow K^{\pm} \pi^{\mp}$ (421:onMode = off, 421:onIfMatch = 321 211)
- Replace $K^{\pm} \pi^{\mp}$ pair with mother D^0 , then reconstruct jets with anti- k_{T}
 - Require exactly one D^0 per jet

- Use Pythia 8 with HardQCD:all=on (enabling all $2 \rightarrow 2$ matrix elements)
- Check at parton level for at least one c quark after the shower
 - c quark required to be within $1 < |\eta| < 6$ (for hadrons, $2 < |\eta_{LHCb}| < 5$)
- Repeat hadronization until a D^0 is produced in the event (max attempts = 10)
- Force all $D^0 \rightarrow K^{\pm} \pi^{\mp}$ (421:onMode = off, 421:onIfMatch = 321 211)
- Replace $K^{\pm} \pi^{\mp}$ pair with mother D^0 , then reconstruct jets with anti- k_{T}
 - Require exactly one D^0 per jet
- 11 p_That bins, 1M events each: (9, 12, 16, 21, 28, 36, 45, 57, 70, 85, 100, ∞)
 - Scale histograms by pythia.info.sigmaGen() / N_events

- First look at D⁰-jet cross section
- Ratio designates the "tagging fraction", e.g. the statistics retained in new tagging algorithms

dN/dp_{T,jet} **LHCb** unofficial Pythia 8 Monash 2013 = 0.5 full jets GHS (α=1) CMP (a=0.1 = 5.02 Te $2.5 < |\eta_{\rm iet}| < 4.5$ $\rightarrow K \pi$ 10 10 Ratio to AKT 0.3 $p_{\mathrm{T.iet}}$

Old, local implementation of SDF

- First look at D^0 -jet cross section
- Ratio designates the "tagging fraction", e.g. the statistics retained in new tagging algorithms

Not removing jets with a second charm hadron $(D^{\pm}, \Lambda_c, D^*, ...)$ \rightarrow This was a technical bug in the local implementation

• Z+jet naturally enhances the production of quark-jets at LO

• Z+jet naturally enhances the production of quark-jets at LO

- Replace **HardQCD**:all=on with off and:
 - WeakBosonAndParton: qqbar2gmZg=on $(q\bar{q} \rightarrow \gamma^*/Z^0 g)$
 - WeakBosonAndParton:qg2gmZq=on $(qg \rightarrow \gamma^*/Z^0 g)$

35

Heavy quarkonium in-jet?

• How to think about "heavy-flavor" jets with heavy $q\bar{q}$ pairs (e.g. J/ψ)?

Heavy quarkonium in-jet?

• How to think about "heavy-flavor" jets with heavy $q\bar{q}$ pairs (e.g. J/ψ)?

Heavy quarkonium in-jet?

• How to think about "heavy-flavor" jets with heavy $q\bar{q}$ pairs (e.g. J/ψ)?

	H	This exact observable also measured by:							
•	Но	CMS: PLB 825 (2021) 136842							
р	0.3	ATLAS: JHEP 12 (2021) 131							
do/o		ALICE: preliminary							
	0.2	$b \rightarrow J/\psi$ (non-prompt) $0.2 - (Pythia 8)$							
	0.1	Use new algorithms to study							
	0	shower and hadronization							
)	effects with higher precision?							

43

- e.g., $B^{\pm} \rightarrow (J/\psi \rightarrow \mu^{+}\mu^{-}) K^{\pm}$
- Minimal bias on the reconstructed HF-hadron candidates
- 2) Reconstructing **secondary vertices (SVs)**
 - Build SV from tracks which are displaced from the primary vertex (PV)

1) Reconstructing individual decay channels

• e.g., $B^{\pm} \rightarrow (J/\psi \rightarrow \mu^{+}\mu^{-}) K^{\pm}$

• Minimal bias on the reconstructed HF-hadron candidates

- 2) Reconstructing secondary vertices (SVs)
 - Build SV from tracks which are displaced from the primary vertex (PV)

EW-tagged heavy flavor production

• Search for intrinsic charm

EW-tagged heavy flavor production

• Search for intrinsic charm

11 June 2024

Phys. Rev. Lett. 128 (2022) 082001

EW-tagged heavy flavor production

Repeat with Run 3 data (better statistics) & new flavor algorithm?

11 June 2024

EW-tagged heavy flavor production

"We establish the existence of intrinsic charm at the 3σ level"

Repeat with Run 3 data (better statistics) & new flavor algorithm?

Repeat with Run 3 data (better statistics) & new flavor algorithm?

11 June 2024

- NNLO predictions now available
 - Requires use of IRC-safe flavor tagging algorithm

Repeat with Run 3 data (better statistics) & new flavor algorithm?

- NNLO predictions now available
 - Requires use of IRC-safe flavor tagging algorithm
- Possibility to resolve the 3σ discrepancy with a new Run 3 measurement, using higherprecision experimental & theoretical methods

11 June 2024

Jet fragmentation functions

55

Jet fragmentation functions

Measurement for inclusive Z+jets published

• Train a Boosted Decision Tree (BDT) to identify HF jet candidates

• Could be (re)trained to study B^{\pm} -jets of theoretical interest?

 An excellent experiment for HF-jet studies in mostly unexplored kinematic region!

- An excellent experiment for HF-jet studies in mostly unexplored kinematic region!
- Ongoing studies using WTA flavor tagging (Lund jet plane, jet mass, jet fragmentation functions...)

- An excellent experiment for HF-jet studies in mostly unexplored kinematic region!
- Ongoing studies using WTA flavor tagging (Lund jet plane, jet mass, jet fragmentation functions...)
- A small team of hard-working experimental jet experts ready to make strong measurements with data from LHC Runs 2 & 3

- An excellent experiment for HF-jet studies in mostly unexplored kinematic region!
- Ongoing studies using WTA flavor tagging (Lund jet plane, jet mass, jet fragmentation functions...)
- A small team of hard-working experimental jet experts ready to make strong measurements with data from LHC Runs 2 & 3
- Feel free to contact us for collaboration ③