Z boson production associated with Charm and Beauty Jets in ATLAS

12th June 2024, Flavoured Jets at the LHC, Durham IPPP

Yi Yu

The Large Hadron Collider

LHC - Large Hadron Collider // SPS - Super Proton Synchrotron // PS - Proton Synchrotron // AD - Antiproton Decelerator // CLEAR - CERN Linear Electron Accelerator for Research // AWAKE - Advanced WAKefield Experiment // ISOLDE - Isotope Separator OnLine // REX/HIE - Radioactive EXperiment/High Intensity and Energy ISOLDE // LEIR - Low Energy Ion Ring // LINAC - LINear ACcelerator // n_TOF - Neutrons Time Of Flight // **HiRadMat - High-Radiation to Materials**

[CERN-GRAPHICS-2019-002](https://cds.cern.ch/record/2684277)

- Frontier particle physics @ TeV scale
	- Higgs physics: Yukawa coupling, self interactions

 \Rightarrow mass origin of matter particles

- \Rightarrow evolution of vacuum and universe
- SM precision: bosons, top, fundamental parameters \Rightarrow confront with PDF, electroweak and QCD theory
- New physics: dark matter, exotics, symmetry breaking \Rightarrow search for BSM interaction and particles directly

Why New Physics? ❖

- Neutrino mass, baryon asymmetry, dark matter inflation \mathcal{P} experimental challenges
- Fermion/Higgs hierarchy, gauge unification, vacuum stability \mathcal{F} theoretical motivation

ATLAS Experiment Detectors

- Multipurpose detector targeting Higgs, SM, and New physics \cdot
	- Onion layer structure: inner detector -> calorimeters -> muon spectrometer

Improved muon coverage and trigger

high-granularity timing detector

Hadronic
Calorimeter

NEW all-silicon Inner Tracker coverage up tp $|\eta| = 4.0$

[ATLAS Configuration for Run 3](https://arxiv.org/abs/2305.16623) and HL-LHC

The dashed tracks
are invisible to

the detector

Hard QCD and EWK at ATLAS

[Muon: Eur. Phys. J. C 81 \(2021\) 578](https://arxiv.org/pdf/2012.00578) E/[: JINST 14 \(2019\) P12006](https://arxiv.org/pdf/1908.00005) [FT: Eur.Phys.J.C](https://arxiv.org/pdf/2211.16345) 83 (2023)

- Hard interactions are challenging at LHC \cdot
	- Excellent analysis results depend on the precise *modelling*, *experiment performance*, *analysis strategies*

V + HF jets at hadron collider

 $\cdot \cdot$ V(=W/Z) + jets production has the largest cross-section after multi-jet and inclusive V-boson productions

- \circ At LHC, 1/3 of W/Z production is in association with a jet ($p_T > 30$ GeV)
- Heavy-Flavour (HF) jets = jets originating from the hadronization of c- and b-quark

V + HF jets at hadron collider

V(=W/Z) + jets production has the largest cross-section after multi-jet and inclusive V-boson productions \cdot

- \circ At LHC, 1/3 of W/Z production is in association with a jet ($p_T > 30$ GeV)
- Heavy-Flavour (HF) jets = jets originating from the hadronization of c- and b-quark

Flavour Scheme

[JHEP07\(2012\)022](https://arxiv.org/abs/1203.6393)

- V+HF is characterized by *hard scale Q* and mass of a *heavy quark m*
	- \circ pQCD calculations contain both powers of m^2/Q^2 and $\ln(Q^2/m_b^2)$ for g/q collinear splitting
	- Variety assumptions on dealing with heavy quark masses in ME calculations
	- **3FNS:** massive c-quarks → c-quark appear only via gluon splitting
	- **4FS**: massive b-quarks \rightarrow *b-quark* appear only via *gluon splitting*
		- power and logarithm corrections appear at fixed order explicitly
		- $\circ~$ suitable for $\bm{Q^2}\!\sim\bm{m_{b}^2}$
	- **5FNS**: massless b-quarks → *b-quark* allowed via intrinsic *PDF*
		- $\circ \ \ (m_b{}^2/Q^2)^n$ pushed to higher orders
		- $\circ \ \ln (Q^2/m_b^2)$ resummed to all orders into b-quark PDF
		- $\circ ~$ adequate at $\boldsymbol{Q^2}\gg~\boldsymbol{m_{b}^2}$
	- *Collinear logarithms resummation* affects several key processes in L*HC*→ *Impact* increases in high *Bjorken* and
		- \circ amounts to adding different $O(\alpha_S^{n+1})$ higher-order terms at a fixed order n in perturbation theory
- The complexity of V+HF processes requires calculations with high order precision in QCD \cdot
	- State of the art **MC generators** with matrix-element (ME) calculations at **NLO in QCD**, interfaced with **parton-shower (PS)** for the description of the soft QCD emissions
	- **Fixed-order** theoretical predictions available up to **NNLO** in QCD
		- Effect of missing higher order terms not negligible
		- \circ IRC-safe jet flavour algorithms \Rightarrow soft flavored pairs clustered without ambiguity

Proton PDFs

[Eur. Phys. J. C \(2022\) 82](https://link.springer.com/article/10.1007/JHEP07(2021)223)

- **V + HF** expected to effect at medium and high Bjorken x and momentum transfer Q^2
- Unique access to *s-, c-, b-quark* and *gluon* PDFs in proton
- Allow to determinate the *PDF shape* and *constrain uncertainties* further

○ Vjets play a key role in the R_s and $x(\bar{d}-\bar{u})$ PDF determinations in the high x regions - **ATLASpdf21**

Intrinsic Charm

- *Intrinsic-Charm (IC)* component in the proton \sim debated for 40 years (upper limits on $\langle x_c \rangle$ differ from 0.5% to 2%) $\ddot{\bullet}$
	- c-quarks pairs are considered as part of the proton wave function at rest valence-like structure

- \circ IC enhanced in $x_c > 0.1$ accessible via V+HF in LHC
- \circ LHCb reports an excess in high η region with Z + c
- **NNPDF** gives an evidence on the existence of IC
	- $= (0.62 \pm 0.28) % with peaking at \sim 0.4$

V + HF jets as background for Higgs and NPs **EUT. Phys. J. C 82 (2022)717**

 $\cdot \cdot \cdot$ V+HF jets dominant background & modelling as the limiting factor for a good sensitivity

 \circ VH ($\rightarrow b\overline{b}$, $c\overline{c}$) measurement

 \circ HVT/2HDM/Radion/Graviton search via VV/VH ($\rightarrow ll + q\bar{q}$)

 $\Delta \mu$

6

Z + HF jets Measurement

Inclusive and differential Z+≥1b, ≥2b, ≥1c x-sections and fwd/central ratio for Z+≥1c events with 139 fb-1

- \bullet Z+≥1b: Z p_T, lead b-jet p_T and ΔR(Z, lead b-jet)
- Z+≥2b: m_{bb} , $\Delta \Phi_{bb}$
- \bullet Z+≥1c: Z p_T, lead c-jet p_T, lead c-jet x_F and fwd/central vs Z p_T

Z+≥1 b-jet and Z+≥2 b-jets: ❖

update 36 fb^{-1} results with larger statistics, new FT algorithm and optimized strategy for main backgrounds

- **Z+≥1 c-jet**: first time in ATLAS! ❖
- \Rightarrow Test effect of missing higher-order terms in QCD \Rightarrow Investigate different Flavour-Schemes in predictions
- \Rightarrow Explore possible sensitivity to Intrinsic-Charm

Analysis strategy

Event selection: select $Z(\rightarrow \mu\mu,ee)$ + flavour-tagged jets candidates

Background estimation:

- data-driven $t\bar{t}$ in dedicated CR
- Z_{+jets} from fit to data ("flavour-fit")
- other minor backgrounds from MC samples

From detector to **particle level:**

correction for resolution and efficiency effects with **Bayesian unfolding**

Cross-section measurements

Z+HF events categorized at both reconstructed and particle level

Single jet flavor classified as B, C, L

using cone-based (ΔR <0.3) matching i correct place to replace with between truth hadrons and jets

○ Event flavor classified as 1B, NB, 1C, NC, L

according to the leading jet flavour and number of HF-jets

For the *background estimation* and *detector effect corrections* to the dedicated HF processes, such as Z+>=1b [1B+NB]

Dataset

- \circ Full Run-2 data, $L = 140 fb^{-1}$
- Monte Carlo samples
	- NLO ME+PS state-of-the-art generators with high parton-multiplicity in ME (MGAMC@NLO + PY8 with FXFX merging and SHERPA 2.2.11)
- **Event selection**

○ **Define 2 Signal Regions (SR) based on the number of flavour-tagged jets:**

*1-tag***: Z+≥1 b-jet** and **Z+≥1 c-jet** measurements

*2-tag***: Z+≥2 b-jets** measurement

Flavour Tagging

\bullet **DL1r**

- High level neural network algorithm operating on outputs from intermediate track and vertex algorithms
- DL1r discriminant calculated from

the b-, c- and light-jet probabilities

$$
D_{\text{DL1r}} = \ln(\frac{p_b}{f_c \cdot p_c + (1 - f_c \cdot p_{light})})
$$

b-tagging based on

- Selections provided with 60%, 70%, 77% and 85% b-tagging efficiency
- Flavour-sensitive distribution available

with 5 exclusive bins obtained with different b-tagging selections

DL1r @ 85% WP retains *85%* b-jets and *38%* c-jets

b-hadron decay signature

- *displaced tracks*
- *secondary vertex*
- *high-track multiplicity*
- *longitudinal impact parameter*
- *semi-leptonic decays*

Data-driven $t\bar{t}$ background

- $\ddot{\bullet}$ Dileptonic events represent the second largest background
	- Using **data-driven technique** to avoid large modelling uncertainties (up to ~70% at high Z pT)

Method of the Transfer Factors

- o opposite flavour eµ CR enhanced with $t\bar{t}$ events (>90%)
- $t\bar{t}$ template in CR obtained by subtracting other MC from data
- **O Transfer Factors (TFs)** as ratio of $t\bar{t}$ MC distributions in SR and CR

$$
t\bar{t}^{SR} = \boxed{t\bar{t}_{Data}^{CR}} \cdot \boxed{TR^{CR \rightarrow SR}}
$$

Systematics:

Strong reduction of detector-level systematics propagated through TFs CR \rightarrow SR extrapolation uncertainty derived via MC v.s. DD $t\bar{t}$ in VR

Z+jet process with jet-flavour different from the one measured is the largest source of background ❖

→ **Correct Z+jets flavour components** and constrain systematics **with flavour-fit**

Maximum-likelihood fit to data based on flavour sensitive distribution

Example for 1-tag SR:

Fit of **flavour-tagging score (DL1r) in calibrated bins**

3 free parameters corresponding to **Z+≥1 b-jet, Z+≥1 c-jet** and **Z+≥light** jets normalization

Z+jets background and flavour fit

- **Fit performed in individual** (optimized) **bins** ❖ **of each measured observable**
- **& Bin-by-bin scale factors** allow to **correct** both **normalization** and **shape** of Z+flavoured-jets contributions

detector-level systematics affect Z+jets templates - repeat flavour fit uncertainty on Z+jets background yields from comparison of two MCs

 10^3

Differential cross sections corrected to particle level with **iterative Bayesian unfolding**:

selection efficiency, resolution effects and differences between detector level and fiducial phase spaces

Z+≥1 b-jet, Z+≥1 c-jet and Z+≥2 b-jets cross sections measured at **particle level** in **fiducial phase space**

Uncertainties on the cross section measurements

- **x2 improved precision on Z + b-jets** measurements with respect to previous ATLAS results ❖
- Dominant uncertainty contributions from $\ddot{\bullet}$

flavour-tagging, jet energy scale and resolution and unfolding

Statistical uncertainty on data <1% ❖

Differential distributions: total unc. **<5% in Z+≥1 b-jet, ~10-15% in Z+≥2 b-jets and Z+≥1 c-jet** for modest

Theoretical predictions

Measured cross-sections compared with several predictions, test sensitivity to \cdot

[arXiv:2109.02653](https://arxiv.org/abs/2109.02653) [Phys. Lett. B 843 \(2023\)](https://arxiv.org/abs/2211.01387) [Eur. Phys. J. C](https://link.springer.com/article/10.1140/epjc/s10052-023-11530-x) 83, 336 [PhysRevLett.130.161901](https://journals.aps.org/prl/pdf/10.1103/PhysRevLett.130.161901)

Inclusive cross-section results

 σ (Z+≥1 b-jet) = 10.49 \pm 0.02 (stat.) \pm 0.59 (syst.) pb

 σ (Z+≥2 b-jets) = 1.39 \pm 0.01 (stat.) \pm 0.13 (syst.) pb

 σ (Z+≥1 c-jet) = 20.89 \pm 0.07 (stat.) \pm 2.77 (syst.) pb

◆ 4FS and 5FS agrees with data

- ◆ Good description from 5FS
- \triangleq 4FS with large underestimation

ATLAS

 \sqrt{s} = 13 TeV, 140 fb⁻¹

 $--- 10.49 \pm 0.02 \pm 0.59$ pb

Data (stat. ⊕ syst.)

▲ MGaMC+Py8 FxFx 5FS (NLO)

O MGaMC+Py8 Zbb 4FS (NLO)

□ MGaMC+Py8 5FS (NLO)

 $Z(\rightarrow ll) + \geq 1$ b-jet

Data (stat.)

▼ Sherpa 5FS (NLO)

16

- ◆ 5FS in agreement with data
- ◆ 3FS with large underestimation

Results consistent with previous ATLAS measurement with 36 fb^{-1}

22

 $\sigma(Z + \geq 1 \text{ b-jet})$ [pb]

20

8

 10

 $12[°]$

5FS: good description by both NLO ME+PS state-of-the-art MCs (MGAMC+PY8 FXFX and SHERPA 2.2.11)

4FS: similar modelling of 5FS, but large underestimation of data **- no log term resummation in PDF evolution!**

Fixed-order: Large divergences founded in the high p_T region for all predictions. Uncertainty related to the correction scale factor for different jet algorithms.

5FS: good description by both NLO ME+PS state-of-the-art MCs (MGAMC+PY8 FXFX and SHERPA 2.2.11)

4FS: mismodelling of collinear and large ΔR(Z, b−jet)

Fixed-order: NLO discrepancies improved with NNLO. Calculations suffer from divergences at $\Delta R(Z,b-jet) \sim \pi$ uncertainties increase

- $\Delta \Phi_{\rm bb}$: good modelling by all predictions
- m_{bb} : similar description by all predictions, with steep decrease for $m_{bb} > 80$ GeV **none of the predictions in agreement with data in the full spectrum**

5FS: soft pT spectra well described by NLO ME+PS state-of-the-art MCs (MGAMC+PY8 FXFX and SHERPA 2.2.11)

3FS: large underestimation of normalization by a factor \approx 3

- **no log-term resummation in PDF evolution!**

Fixed-order: at high p_T NNLO calculations in worst agreement than NLO ME+PS. NLO predicts softer p_T spectra, which is slightly improved with NNLO, why?

Two scale factors used to correct data for a fair comparison with parton-level fixed-order predictions obtained with flavor-dressing algorithm (IRC-safe)

- **Jet flavour** algorithm correction ~ **50% (40%) in high pT region for Z+c (Z+b)**:
	- ratio of *FD-alg.* to *Exp-alg.* predictions (obtained with NLO+PS, hadron-level)
- **Hadronization and MPI** effects \sim 20% in low pT region:
	- ratio of *parton-level* to *hadron-level* predictions

(obtained with NLO+PS, FD algorithm)

SFs derived with *MG+ Py8 FxFx (for FlavAlg Corr)*, *Pythia (for Hadron+MPI Corr.)* consistent with the one derived with *MG+Py8 (for both)* from Rhorry Gauld for Z+c process

Cons.:

- **Additional uncertainties** for the SFs should be been taken counted for the universal purpose
- **Not sure** if the SFs derived at **NLO+PS suitable for NNLO predictions**

Thanks to discussions from Federico and Giovanni!

FlavAlg Corr), *Pythia (for Hadron+MPI Corr.)*

inconsistent with the one derived with *MG+Py8 (for both)* from Rhorry Gauld for **Z+b** process

As it contains one additional correction:

Jet clustering **all particles after bhadron decay (ATLAS)**

-->

Jet clustering other particles **and stable b-hadrons (R.G.)**

 \checkmark Sizable effects for only Z+b results from b hadrons have more cascade decays than c hadrons

Interesting point:

the **IRC-unsafe** components relevant to the high p_T rather η

HF-quark mass dependent.. High-Q dependent..

We can image the dynamical origin of IRC-unsafe components are mostly those collinear splittings with the type $\ln(Q^2/m_q^2)$

IRC-unsafe components

MGAMC+PY8 with **several PDF sets** testing **different IC-models**

- \triangleq Large reduction of systematics in the ratio (~8%)
- **Similar trend by all IC models** from NNPDF, CT14 and CT18 ✦
	- PDF sets with only perturbative charm (no IC): NNPDF40 (pch), CT14NNLO and CT18NNLO

MGAMC+PY8 with **several PDF sets** testing **different IC-models**

- ✦ BHPS2 (with $\langle x_c \rangle \sim$ 2%) improves the description of data
	- In more realistic scenarios (NNPDF and CT18) the improvement is still marginal related to the uncertainties

Looking inside Jets: jet substructure phenomenology

[ATL-PHYS-PUB-2021-039](https://cds.cern.ch/record/2788490/files/ATL-PHYS-PUB-2021-039.pdf) [Lecture Notes in Physics](https://arxiv.org/abs/1901.10342) [volume 958 \(2019\)](https://arxiv.org/abs/1901.10342)

Jet substructure variables are making great progress in the boosted object tagging

○ *ParticleNet* exploits information related to jet substructures, flavour, and pileup with an advanced graph neutral network

- **Jet tagging for top, W, Z, quark, gluon adopt with JSS variables**
	- Observation of the **Higgs coupling to charm** at the **HL-LHC** will be difficult, new analysis techniques of multivariate techniques and jet substructure observables provide a feasible direction

Lund Jet Plane and Jet Substructure Variables

- \cdot Lund Jet Plane provides an overview of the pT -fraction and angular distributions of radiations inside a jet
	- *each region* of the diagram is dominated by *different origins of radiation* such as hard-scatter processes, underlying event or pileup

Looking inside Jets: jet substructure phenomenology

- Possibility to test **SM validity in phase-spaces** that are **not accessible** in **simple differential cross-section** ❖ measurements.
	- calculated with features of jet constituents (pt, energy, correlation,…)
	- sensitive to **jet origins** and might **dark jet**

Z + Charm Jets Measurement

- Measure **fiducial kinematic** observables QCD Predictions, MC Modelling, charm and gluon PDFs
	- Jet multiplicity and jet properties: N_{jets} , p_T^c , Y_c
	- Dijet distributions: m_{cc} , p_{cc}^T , $\Delta\phi_{cc}$, ΔY_{cc} , ΔR_{cc}
	- Boson and Boson-jet distributions: p_T^Z , Y_z , ΔY_{Zc}
- Measure **optimal observables** Sensitive to intrinsic charm, glue splitting, jet origins
	- Ratio of central/forward, p_T^{cc}/m_{cc}
	- LJP of leading c-jet and resolved 2 c-jets, observable related to q/g difference
- Measure **Jet substructure observables** Parton shower, W/Z/H/Top/quark-gluon/polarization tagger designment
	- Select from jet mass, charge, shapes, splitting functions, Lund jet plane
	- Studies show which's topology-sensitive \mathcal{F} [JSS distributions](#page-33-0), flavour-sensitive \mathcal{F} [LJP of b/c/l jets](https://indico.cern.ch/event/1268020/contributions/5451861/attachments/2677149/4643246/AidalaLJPInstJul2023.pdf)

Collaboration effort

- Charm tagger (GN2v01) calibration
- Background estimation for NP search with mono-charm

More words:

QCD studies in the **boosted regime** is **important**, as **tagging performance decreases in high pT** besides the necessary of testing theoretical predictions

Conclusion

- EWK gauge bosons production associated with jets represents an essential ingredient of Standard Model
	- O V + b/c jets measurement as benchmarks for theoretical predictions
		- allow to explore the sensitivity to new phenomenon i.e. intrinsic charm
		- provide useful inputs for global fit PDF, sensitive to s-, c-, b-quark, and gluon PDFs
		- \Rightarrow alignment of IRC jet-flavour algorithm in experimental and theoretical communities highly demanded to benefit from the precise NNLO calculations
	- Precise studies of jet substructures also well motivated from both of SM and BSM views

- \checkmark Multi-tags in the collinear cases might be inaccurate in the MC mimicing the high $\lt \mu$ $>$ experimental conditions \rightarrow possibly large unfolding uncertainty
- \checkmark How to implement IRC-safe flavour algorithms into the ATLAT Jet reconstruction algorithm/analysis level properly should be clear

Worthy to make the attempts in Run3 ZHF measurements

** Back up*

Event display of Z+>=2b-jets candidate from data recorded by ATLAS

V + jets at hadron collider

 $\cdot \cdot$ V(=W/Z) + jets production has the largest cross-section after multi-jet and inclusive V-boson productions

 \circ At LHC, 1/3 of W/Z production is in association with a jet ($p_T > 30$ GeV)

 10^{-2}

 10^{-3}

 z

 $t\bar{t}$

VV

-- standard candle at LHC for Modellings and Calibrations

Status: October 2023

Pile-up Effects on Flavour Tagging Performance

[Eur.Phys.J.C](https://arxiv.org/pdf/2211.16345) 83 (2023)

\cdot **DL1r**

- High level algorithm operating on outputs from intermediate track and vertex algorithms
- DL1r discriminant calculated from the b-, c- and light-jet probabilities

$$
D_{\text{DL1r}} = \ln(\frac{p_b}{f_c \cdot p_c + (1 - f_c \cdot p_{light})})
$$

V + HF jets as background for Higgs and NPs

 $\ddot{\bullet}$ V+HF jets dominant background & modelling as the limiting factor for a good sensitivity

○ Example 1: VV+VH semi-leptonic measurement and search

 $m(b, l)$ $[Ge]$

Fit performed with Vjets divided to **HL, LL, HH** categories with floating normalization SFs

 $\sqrt{5}$ =13 TeV 140 fb

VV₁Lep MergHP Inclusive MCR

- ◆ V+jets mis-modelling drastically decrease the sensitivity
- Importance to well describe *separated V+HF (L)* processes by predictions

Differential Z+>= 1b-jet cross-section results (Norm.)

Differential Z+>= 2b-jet cross-section results (Norm.)

Intrinsic Charm

- Idea of intrinsic charm (IC)¹ contribution to proton PDF debated for \sim 40 years $\frac{1}{2}$
	- Initially introduced to describe enhanced charmed hadron production at ISR
	- Still no reliable experimental confirmation/exclusion
- Valence-like c quarks have large $x \ge 0.1$, unlike perturbative charm with smaller x
	- Understanding of heavy quark PDF is very important for Higgs and BSM background modelling
	- Studying charm associated production with Z or γ more sensitive than inclusive charm production²
		- IC sensitive in $x_c > 0.1$, where $x_c \ge x_F^V = \frac{2p_T^V}{\sqrt{s}} \sinh(\eta_V)$
		- Selection criteria hard c-jet and Z in forward region

CT14 and NNPDF Φ_{μ}

- Provide PDF sets with inclusion of IC in the fits according to BHPS model \bullet
- PDF reweighting is used to model the IC effect with Z+jets NLO sample \bullet

$$
\begin{array}{c|c}\n & \text{w}(\ket{uudc\bar{c}}) & \langle x \rangle_{\text{IC}} \\
\hline\n\text{BHPS1} & 1.1\% & 0.6\% \\
\text{BHPS2} & 3.5\% & 2.1\% \\
\end{array} \quad w(x_1, x_2, Q) = \frac{f_i^{\text{new}}(x_1, Q^2) f_j^{\text{new}}(x_2, Q^2)}{f_i^{\text{old}}(x_1, Q^2) f_j^{\text{old}}(x_2, Q^2)}
$$

CT18FC PDF set

- An updated CTEQ paper on IC PDFs: PLB 843 (2023) 137975 \mathbb{Z}^n
	- All PDF sets available at web page \mathbb{Z} , also included in LHAPDF
- Baseline no-IC PDF to be used: CT18NNLO (14000)
	- Uncertainties: 58 eigenvector variations
- \blacktriangleright Four variants including IC:
	- 1. CT18 BHPS3 (14087) similar to earlier BHPS variants, different amount of IC (?)
	- 2. CT18 MBM-C (14090) meson-baryon model (confining), asymmetric $c\bar{c}$ contributions
	- 3. CT18 MBM-E (14093) meson-baryon model (effective-mass), similar to 2, but more constrained
	- 4. CT18X BHPS3 (14096) same as 1, but using CT18XNNLO fit as a baseline (with DIS data fitted using x-dependent μ_F to model small-x saturation)
- ► For each of them two variations with $\Delta \chi^2 = 10, 30$
	- \triangleright $\Delta \chi^2 = 30$ standard CT 68% CL tolerance
	- \triangleright $\Delta \chi^2 = 10$ more restrictive, compatible with MSHT20 tolerance
- ▶ Options suggested by Tim Hobbs:
	- Minimal: use CT18 BHPS3 and CT18 MBM-C in comparison to nominal CT18NNLO, evaluate uncertainties with $\Delta \chi^2 = 30$ variations
	- Ideal: test all options (note that for CT18X BHPS3 need a different nominal CT18XNNLO)

Feynman-variable $x_F = 2p_Z/\sqrt{s}$ 10^{7} $d\sigma/dx_F$ [pb] **ATLAS WIP**

13 TeV, 140 fb 1

anti-k_t jets, R = 0.4
 $\frac{p^{jet}}{T} > 20$ GeV, $|y^{jet}| < 2.5$
 $\frac{p^{jet}}{T} > 20$ GeV, $\frac{p^{jet}}{T} > 20$ $Z/\gamma^* (\rightarrow \text{II}) + \geq 1$ c-jet $10⁶$ 13 TeV, 140 fb⁻¹ Red Data 10^3 = 13 TeV, 140 fb⁻¹ \leftrightarrow Data $10⁵$ anti- k_1 jets, $R = 0.4$ $10^2 \frac{F}{m}$ anti-k_t jets, R = 0.4 \rightarrow NNPDF40 \rightarrow NNPDF40 10^4 = $p_T^{\text{jet}} > 20$ GeV, $|y^{\text{jet}}| < 2.5$ $10 \frac{m}{m}$ p^{iet} > 20 GeV, $|y^{jet}|$ < 2.5 $-$ CT14nnlo $-$ CT14nnlo -- CT18NNLO -- CT18NNLO 10^3 \rightarrow CT18XNNLO ← CT18XNNLO $10²$ $10⁻$ $10\square$ 10^{-2} 10^{-3} 10^{-} 10^{-1} 10^{-5} 10^{-2} 10 1.4 NNPDF40 (pch) -- NNPDF40 (LHCbZc) -- NNPDF40 (LHCb+EMC) \Box NNPDE40 (LHCbZe) MC/Data MC/Data 1.2 1.2 0.8 0.8 0.6 0.6 1.4 $-$ B-CT14nnlo \rightarrow BHPS1 **+**BHPS2 1.4 □ CT14nnlo ^OBHPS1 **+**BHPS2 **MC/Data** MC/Data 1.2 1.2 0.8 0.8 0.6 0.6 1.4 1.4 MC/Data MC/Data 1.2 0.8 0.8 0.6 0.6 10^{-2} 10^{-1} $10²$ 10^{3} p₋(leading c-jet) [GeV] x_F (leading c-jet)

Yi Yu Flavoured Jets at the LHC **50**

NLO+PS (5FNS) + NLO EW Correction

- **Data:** full Run 2, 140 fb⁻¹
- **MC samples**
	- **MGaMC@NLO with FxFx merging** up to 3 partons in NLO ME!
	- Sherpa 2.2.11 up to 2 partons in NLO ME
	- Besides the QCD-only nominal, Sherpa provides on-the-fly weights including approximate NLO electroweak corrections using up to three different approaches
	- \Rightarrow additive, multiplicative, exponentiated

Approach that yields **the smallest overall correction with respect to the QCD-only curve** as the nominal prediction Assign the difference to the curve with the **largest correction from other approaches as a (symmetrised) uncertainty**

*[*backup](#page-47-0)*

NLO+PS (5FNS) + NLO EW Correction: Z+≥1b

• Good agreement for both of MG FxFx and Sherpa 2.2.11, with the former giving better modelling

- NLO EW correction is negligible, with difference from QCD-only only visible in the high p_T^2 region (~ 10%)
- With the uncertainty taken from different EW virtual correction approaches at 10% \sim 20% at the most

NLO+PS (5FNS) + NLO EW Correction: Z+≥1c

• Mis-modelling visible in the high p_T^Z tails, with softer spectrum for lead c-jet pT and xF than data

- NLO EW correction is negligible, with difference from QCD-only only visible in the high p_T^2 region (~ 10%)
- With the uncertainty taken from different EW virtual correction approaches at 10% \sim 20% at the most

NLO+PS (5FNS) + NLO EW Correction: Z+≥2b

- Perfect modelling for the shape of $\Delta\phi_{hh}$ and overall agreement for m_{hh}
- Sherpa gives much larger theoretical uncertainty as the case in Z+1b \circ

• QCD scale uncertainty (for missing higher order effects) reduced largely for p_T^Z (fw | cen)