Quarks

Z boson production associated with Charm and Beauty Jets in ATLAS

12th June 2024, Flavoured Jets at the LHC, Durham IPPP

Yi Yu

Leptons

The Large Hadron Collider

LHC - Large Hadron Collider // SPS - Super Proton Synchrotron // PS - Proton Synchrotron // AD - Antiproton Decelerator // CLEAR - CERN Linear Electron Accelerator for Research // AWAKE - Advanced WAKefield Experiment // ISOLDE - Isotope Separator OnLine // REX/HIE - Radioactive EXperiment/High Intensity and Energy ISOLDE // LEIR - Low Energy Ion Ring // LINAC - LINear ACcelerator // n_TOF - Neutrons Time Of Flight // HiRadMat - High-Radiation to Materials

CERN-GRAPHICS-2019-002

- Frontier particle physics @ TeV scale
 - Higgs physics: Yukawa coupling, self interactions
 - \Rightarrow mass origin of matter particles
 - \Rightarrow evolution of vacuum and universe
 - SM precision: bosons, top, fundamental parameters
 ⇒ confront with PDF, electroweak and QCD theory
 - New physics: dark matter, exotics, symmetry breaking
 ⇒ search for BSM interaction and particles directly
- Why New Physics?
 - Neutrino mass, baryon asymmetry, dark matter inflation * experimental challenges
 - Fermion/Higgs hierarchy, gauge unification, vacuum stability stability

ATLAS Experiment Detectors

- Multipurpose detector targeting Higgs, SM, and New physics
 - Onion layer structure: inner detector -> calorimeters -> muon spectrometer

Improved muon coverage and trigger

NEW endcap high-granularity timing detector

NEW all-silicon Inner Tracker coverage up tp $|\eta| = 4.0$

ATLAS Configuration for Run 3 and HL-LHC

Hard QCD and EWK at ATLAS

Muon: Eur. Phys. J. C 81 (2021) 578 E/γ: JINST 14 (2019) P12006 FT: Eur.Phys.J.C 83 (2023)

- Hard interactions are challenging at LHC
 - Excellent analysis results depend on the precise *modelling*, *experiment performance*, *analysis strategies*

V + HF jets at hadron collider

✤ V(=W/Z) + jets production has the largest cross-section after multi-jet and inclusive V-boson productions

- At LHC, 1/3 of W/Z production is in association with a jet (p_T > 30 GeV)
- Heavy-Flavour (HF) jets = jets originating from the hadronization of c- and b-quark

V + HF jets at hadron collider

✤ V(=W/Z) + jets production has the largest cross-section after multi-jet and inclusive V-boson productions

- At LHC, 1/3 of W/Z production is in association with a jet (p_T > 30 GeV)
- Heavy-Flavour (HF) jets = jets originating from the hadronization of c- and b-quark

Flavour Scheme

- V+HF is characterized by *hard scale Q* and mass of a *heavy quark m*
 - pQCD calculations contain both powers of m^2/Q^2 and $\ln(Q^2/m_b^2)$ for g/q collinear splitting
 - ✤ Variety assumptions on dealing with heavy quark masses in <u>ME calculations</u>
 - **3FNS:** massive c-quarks \rightarrow c-quark appear only via gluon splitting
 - **4FS**: massive b-quarks $\rightarrow b$ -quark appear only via gluon splitting
 - o power and logarithm corrections appear at fixed order explicitly
 - o suitable for $Q^2 \sim m_b^2$
 - **<u>5FNS</u>**: massless b-quarks \rightarrow *b-quark* allowed via intrinsic *PDF*
 - $(m_b^2/Q^2)^n$ pushed to higher orders
 - $\ln(Q^2/m_b^2)$ resummed to all orders into b-quark PDF
 - $\circ~$ adequate at $Q^2 \gg~m_b^2$
 - Collinear logarithms resummation affects several key processes in LHC \rightarrow Impact increases in high Bjorken x and Q
 - amounts to adding different $O(\alpha_S^{n+1})$ higher-order terms at a fixed order n in perturbation theory

JHEP07(2012)022

- The complexity of V+HF processes requires calculations with high order precision in QCD
 - State of the art MC generators with matrix-element (ME) calculations at NLO in QCD, interfaced with parton-shower (PS) for the description of the soft QCD emissions
 - Fixed-order theoretical predictions available up to NNLO in QCD
 - Effect of missing higher order terms not negligible
 - \circ IRC-safe jet flavour algorithms \Rightarrow soft flavored pairs clustered without ambiguity

Proton PDFs

Eur. Phys. J. C (2022) 82

- V + HF expected to effect at medium and high Bjorken x and momentum transfer Q²
- Unique access to *s-, c-, b-quark* and *gluon* PDFs in proton
- Allow to determinate the *PDF shape* and *constrain uncertainties* further

• Vjets play a key role in the R_s and $x(\overline{d} - \overline{u})$ PDF determinations in the high x regions - **ATLASpdf21**

Intrinsic Charm

- Intrinsic-Charm (IC) component in the proton ~ debated for 40 years (upper limits on $\langle x_c \rangle$ differ from 0.5% to 2%)
 - c-quarks pairs are considered as part of the proton wave function at rest valence-like structure

- IC enhanced in $x_c > 0.1$ accessible via V+HF in LHC
- **LHCb** reports an excess in high η region with Z + c
- **NNPDF** gives an evidence on the existence of IC
 - $< x_c > = (0.62 \pm 0.28)$ % with peaking at ~ 0.4

V + HF jets as background for Higgs and NPs

- V+HF jets dominant background & modelling as the limiting factor for a good sensitivity
 - VH ($\rightarrow b\bar{b}, c\bar{c}$) measurement

• HVT/2HDM/Radion/Graviton search via VV/VH ($\rightarrow ll + q\bar{q}$)

Δμ

6

Z + HF jets Measurement

Inclusive and differential Z+≥1b, ≥2b, ≥1c x-sections and fwd/central ratio for Z+≥1c events with 139 fb⁻¹

- Z+>1b: Z p_T , lead b-jet p_T and $\Delta R(Z$, lead b-jet)
- Z+≥2b: m_{bb} , $\Delta \Phi_{bb}$
- Z+≥1c: Z p_T , lead c-jet p_T , lead c-jet x_F and fwd/central vs Z p_T

★ Z+≥1 b-jet and Z+≥2 b-jets:

update 36 fb^{-1} results with larger statistics, new FT algorithm and optimized strategy for main backgrounds

- ★ Z+≥1 c-jet: first time in ATLAS!
- \Rightarrow Test effect of missing higher-order terms in QCD
- \Rightarrow Investigate different Flavour-Schemes in predictions
- \Rightarrow Explore possible sensitivity to Intrinsic-Charm

Analysis strategy

Event selection: select $Z(\rightarrow \mu\mu, ee)$ + flavour-tagged jets candidates

Background estimation:

- data-driven $t\bar{t}$ in dedicated CR
- Z+jets from fit to data ("flavour-fit")
- other minor backgrounds from MC samples

From detector to particle level:

correction for resolution and efficiency effects with **Bayesian unfolding**

Cross-section measurements

Z+HF events categorized at both reconstructed and particle level

Single jet flavor classified as B, C, L

using cone-based (ΔR <0.3) matching i correct place to replace with between truth hadrons and jets

IRC safe jet-flavour algorithm

Event flavor classified as 1B, NB, 1C, NC, L 0

according to the leading jet flavour and number of HF-jets

For the **background estimation** and **detector effect corrections** to the dedicated HF processes, such as Z+>=1b [1B+NB]

Comparison with theoretical predictions

Dataset

- Full Run-2 data, $L = 140 f b^{-1}$
- Monte Carlo samples
 - NLO ME+PS state-of-the-art generators with high parton-multiplicity in ME (MGAMC@NLO + PY8 with FXFX merging and SHERPA 2.2.11)
- Event selection

• Define 2 Signal Regions (SR) based on the number of flavour-tagged jets:

1-tag: Z+≥1 b-jet and **Z+≥1 c-jet** measurements

2-tag: Z+≥2 b-jets measurement

Flavour Tagging

DL1r

- High level neural network algorithm operating on 0 outputs from intermediate track and vertex algorithms
- DL1r discriminant calculated from 0

the b-, c- and light-jet probabilities

$$D_{\text{DL1r}} = \ln(\frac{p_b}{f_c \cdot p_c + (1 - f_c \cdot p_{light})})$$

b-tagging based on D_{DL1r}

- Selections provided with 60%, 70%, 77% and 85% b-tagging efficiency 0
- Flavour-sensitive distribution available 0

with 5 exclusive bins obtained with different b-tagging selections

✤ DL1r @ 85% WP retains 85% b-jets and 38% c-jets

b-hadron decay signature

- displaced tracks
- secondary vertex
- high-track multiplicity
- longitudinal impact parameter
- semi-leptonic decays

Data-driven $t\bar{t}$ background

- Dileptonic events represent the second largest background *
 - Using data-driven technique to avoid large modelling uncertainties (up to \sim 70% at high Z pT) 0

Method of the Transfer Factors

- opposite flavour eµ CR enhanced with $t\bar{t}$ events (>90%) 0
- *tt* template in CR obtained by subtracting other MC from data Ο
- **Transfer Factors (TFs)** as ratio of $t\bar{t}$ MC distributions in SR and CR Ο

$$t\bar{t}^{SR} = t\bar{t}_{Data}^{CR} \cdot TR^{CR \to SR}$$

Systematics:

Strong reduction of detector-level systematics propagated through TFs $CR \rightarrow SR$ extrapolation uncertainty derived via MC v.s. DD $t\bar{t}$ in VR

20 30

GeV

Events /

 10^{3}

10²

10

10

Pred. / Data

ATLAS

= 13 TeV, 140 fb⁻¹

 $+ \geq 2$ tagged jets

Data

2×10²

 10^{2}

Single-top

Ion-top processes

 10^{3}

m_{bb} [GeV]

Z+jet process with jet-flavour different from the one measured is the largest source of background

→ Correct Z+jets flavour components and constrain systematics with flavour-fit

Maximum-likelihood fit to data based on flavour sensitive distribution

Example for 1-tag SR:

Fit of flavour-tagging score (DL1r) in calibrated bins

3 free parameters corresponding to **Z+≥1 b-jet**, **Z+≥1 c-jet** and **Z+≥light** jets normalization

Events 0.35 Data ATLAS 0.3 $\sqrt{s} = 13 \text{ TeV}, 140 \text{ fb}^{-1}$ Z + liaht iets $Z(\rightarrow II) + \geq 1$ tagged jet Тор 0.25 43 GeV < p_(leading tagged jet) < 60 GeV Other backgrounds 0.2 0.15 85-77% 77-70% 70-60% <60% 0.05 , Data . Post-fit MG FxFx Post-fit Sherpa 2 3 b-tagging discriminant bin

Z+jets background and flavour fit

- Fit performed in individual (optimized) bins * of each measured observable
- * Bin-by-bin scale factors allow to correct both **normalization** and **shape** of Z+flavoured-jets contributions

detector-level systematics affect Z+jets templates - repeat flavour fit uncertainty on Z+jets background yields from comparison of two MCs

 10^{3}

 Differential cross sections corrected to particle level with iterative Bayesian unfolding:

selection efficiency, resolution effects and differences between detector level and fiducial phase spaces

Object Selection	Acceptance cuts
Lepton <i>b</i> -jet <i>c</i> -jet	$ \begin{array}{l} p_{\rm T} > 27 \; {\rm GeV}, \eta < 2.5 \\ 2 \; {\rm same \; flavour \; and \; opposite \; charge, \; 76 \; {\rm GeV} < m_{\ell\ell} < 106 \; {\rm GeV} \\ p_{\rm T} > 20 \; {\rm GeV}, y < 2.5, \Delta R(b\text{-jet}, \ell) > 0.4 \\ p_{\rm T} > 20 \; {\rm GeV}, y < 2.5, \Delta R(c\text{-jet}, \ell) > 0.4 \end{array} $
Event Selection	Acceptance cuts
$Z + \ge 1 \ b\text{-jet}$ $Z + \ge 2 \ b\text{-jets}$ $Z + \ge 1 \ c\text{-jet}$	$Z + \ge 1$ <i>b</i> -jet and a <i>b</i> -jet is the leading heavy-flavour jet $Z + \ge 2$ <i>b</i> -jets and a <i>b</i> -jet is the leading heavy-flavour jets $Z + \ge 1$ <i>c</i> -jet and a <i>c</i> -jet is the leading heavy-flavour jet
Rapidity regions	Acceptance cuts
Central rapidity Forward rapidity	$ \begin{array}{ c c } Z \text{ boson rapidity } y(Z) < 1.2 \\ Z \text{ boson rapidity } y(Z) \ge 1.2 \end{array} $

Z+≥1 b-jet, Z+≥1 c-jet and Z+≥2 b-jets cross sections measured at **particle level** in **fiducial phase space**

Uncertainties on the cross section measurements

- * x2 improved precision on Z + b-jets measurements with respect to previous ATLAS results
- Dominant uncertainty contributions from

flavour-tagging, jet energy scale and resolution and unfolding

Statistical uncertainty on data <1%</p>

Differential distributions: total unc. <5% in Z+≥1 b-jet, ~10-15% in Z+≥2 b-jets and Z+≥1 c-jet for modest *p*_T

Source of uncertainty	$Z(\rightarrow \ell\ell) + \geq 1 b$ -jet	$Z(\rightarrow \ell \ell) + \ge 2 b$ -jets	$Z(\rightarrow \ell \ell) + \geq 1 c$ -jet	
	[%]	[%]		
Flavour tagging	3.6	5.7	10.3	
Jet	2.4	4.3	6.5	
Lepton	0.3	0.3	0.4	
$E_{ m T}^{ m miss}$	0.4	0.5	0.3	
Z+jets background	0.6	1.5	1.6	
Top background	0.1	0.3	< 0.1	
Other backgrounds	< 0.1	0.2	0.1	
Pile-up	0.6	0.6	0.2	
Unfolding	3.3	5.8	5.0	
Luminosity	0.8	0.9	0.7	
Total [%]	5.6	9.4	13.2	

Theoretical predictions

Measured cross-sections compared with several predictions, test sensitivity to

arXiv:2109.02653 Phys. Lett. B 843 (2023) Eur. Phys. J. C 83, 336 PhysRevLett.130.161901

	' Generator/settings	Flav. scheme	PDF	LHAPDF ID	
	Main MC samples				
	MGAMC+Py8 FxFx	5FS	NNPDF3.1 (NNLO) LuxQED	325100	
Different FS in matrix-element calculation	Sherpa 2.2.11	5FS	NNPDF3.0 (NNLO)	303200	
	Predictions to test various flavour schemes				
	MGAMC+Py8	5FS	NNPDF2.3 (NLO)	229800	
	MGAMC+Py8 Zbb	4FS	NNPDF3.1 (NLO) PCH	321500	
	MGAMC+Py8 Zcc	3FS	NNPDF3.1 (NLO) рсн	321300	
	Intrinsic charm (IC) predictions				
	MGaMC+Py8 FxFx	5FS	NNPDF4.0 (NNLO) PCH (no IC)	332100	
IC-component in proton PDFs			NNPDF4.0 (NNLO)	331100	
MGAMC+PY8 FXFX with several PDF sets			NNPDF4.0 (NNLO) EMC+LHCbZc	- [25]	
with different IC medale (DDE neuroichting)			CT18 (NNLO) (no IC)	14000	
with different IC-models (PDF reweighting)			CT18FC – CT18 BHPS3	14087	
			CT18FC – CT18 MCM-E	14093	
			CT14 (NNLO) (no IC)	13000	
			CT14 (NNLO)IC – BHPS1	13082	
Higher order terms in QCD			CT14 (NNLO)IC – BHPS2	13083	
Fixed-order predictions with jet flavour dressing	Fixed-order predictions [3]				
(infrared and collinear safe)	NLO	5FS	PDF4LHC21	93000	
	NNLO	5FS	PDF4LHC21	93000	

Inclusive cross-section results

 σ (Z+≥1 b-jet) = 10.49 ± 0.02 (stat.) ± 0.59 (syst.) pb

 σ (Z+≥2 b-jets) = 1.39 ± 0.01 (stat.) ± 0.13 (syst.) pb

 σ (Z+≥1 c-jet) = 20.89 ± 0.07 (stat.) ± 2.77 (syst.) pb

$Z +\geq 1 b$ -jet

$Z +\geq 2 b$ -jet

4FS and 5FS agrees with data

- ✦ Good description from 5FS
- ✤ 4FS with large underestimation

ATLAS

√s = 13 TeV. 140 fb⁻¹

--- 10.49 \pm 0.02 \pm 0.59 pb

▲ MGaMC+Py8 FxFx 5FS (NLO)

O MGaMC+Py8 Zbb 4FS (NLO)

18

20

22

 $\sigma(Z + \ge 1 \text{ b-jet})$ [pb]

MGaMC+Pv8 5FS (NLO)

 $Z(\rightarrow II) + \ge 1 \text{ b-jet}$

Data (stat.)

Sherpa 5FS (NLO)

16

- ✤ 5FS in agreement with data
- ✤ 3FS with large underestimation

Results consistent with previous ATLAS measurement with 36 fb^{-1}

8

10

12

14

<u>5FS</u>: good description by both NLO ME+PS state-of-the-art MCs (MGAMC+PY8 FXFX and SHERPA 2.2.11)

4FS: similar modelling of 5FS, but large underestimation of data - no log term resummation in PDF evolution!

Fixed-order: Large divergences founded in the high p_T region for all predictions. Uncertainty related to the correction scale factor for different jet algorithms.

<u>5FS</u>: good description by both NLO ME+PS state-of-the-art MCs (MGAMC+PY8 FXFX and SHERPA 2.2.11)

4FS: mismodelling of collinear and large $\Delta R(Z, b-jet)$

Fixed-order: NLO discrepancies improved with NNLO. Calculations suffer from divergences at $\Delta R(Z, b - jet) \sim \pi$ uncertainties increase

- $\Delta \Phi_{hh}$: good modelling by all predictions
- <u>m_{bh}</u>: similar description by all predictions, with steep decrease for <u>m_{bh}</u> > 80 GeV none of the predictions in agreement with data in the full spectrum

<u>5FS</u>: soft pT spectra well described by NLO ME+PS state-of-the-art MCs (MGAMC+PY8 FXFX and SHERPA 2.2.11)

3FS: large underestimation of normalization by a factor ~3

- no log-term resummation in PDF evolution!

<u>Fixed-order</u>: at high p_T NNLO calculations in worst agreement than NLO ME+PS. NLO predicts softer p_T spectra, which is slightly improved with NNLO, why?

Two scale factors used to correct data for a fair comparison with parton-level fixed-order predictions obtained with flavor-dressing algorithm (IRC-safe)

- Jet flavour algorithm correction ~ 50% (40%) in high pT region for Z+c (Z+b):
 - ratio of *FD-alg.* to *Exp-alg.* predictions
 (obtained with NLO+PS, hadron-level)
- Hadronization and MPI effects ~ 20% in low pT region:
 - ratio of *parton-level* to *hadron-level* predictions
 (obtained with NLO+PS, FD algorithm)

SFs derived with *MG+ Py8 FxFx (for FlavAlg Corr)*, *Pythia (for Hadron+MPI Corr.)* consistent with the one derived with *MG+Py8 (for both)* from Rhorry Gauld for Z+c process

Cons.:

- Additional uncertainties for the SFs should be been taken counted for the universal purpose
- Not sure if the SFs derived at NLO+PS suitable for NNLO predictions

Thanks to discussions from Federico and Giovanni!

SFs derived with *MG+ Py8 FxFx (for FlavAlg Corr), Pythia (for Hadron+MPI Corr.)*

inconsistent with the one derived with *MG+Py8 (for both)* from Rhorry Gauld for Z+b process

As it contains one additional correction:

Jet clustering all particles after bhadron decay (ATLAS)

-->

Jet clustering other particles and stable b-hadrons (R.G.)

 Sizable effects for only Z+b results from b hadrons have more cascade decays than c hadrons

Interesting point:

the IRC-unsafe components relevant to the high p_T rather η

HF-quark mass dependent.. High-Q dependent..

We can image the dynamical origin of IRC-unsafe components are mostly those collinear splittings with the type $\ln(Q^2/m_q^2)$

IRC-unsafe components

MGAMC+PY8 with several PDF sets testing different IC-models

- Large reduction of systematics in the ratio (~8%)
- Similar trend by all IC models from NNPDF, CT14 and CT18
 - PDF sets with only perturbative charm (no IC): NNPDF40 (pch), CT14NNLO and CT18NNLO

♦

MGAMC+PY8 with several PDF sets testing different IC-models

BHPS2 (with <*x_c*>~2%) improves the description of data
In more realistic scenarios (NNPDF and CT18) the improvement is still marginal related to the uncertainties

Looking inside Jets: jet substructure phenomenology

Lecture Notes in Physics volume 958 (2019) ATL-PHYS-PUB-2021-039

Jet substructure variables are making great progress in the boosted object tagging

ParticleNet exploits information related to jet substructures, flavour, and pileup with an advanced graph neutral network

- **Jet tagging** for top, W, Z, quark, gluon adopt with JSS variables
 - Observation of the <u>Higgs coupling to charm</u> at the <u>HL-LHC</u> will be difficult, new analysis techniques of multivariate techniques and jet substructure observables provide a feasible direction

Lund Jet Plane and Jet Substructure Variables

- Lund Jet Plane provides an overview of the *pT*-fraction and angular distributions of radiations inside a jet
 - *each region* of the diagram is dominated by *different origins of radiation* such as hard-scatter processes, underlying event or pileup

Looking inside Jets: jet substructure phenomenology

- Possibility to test SM validity in phase-spaces that are not accessible in simple differential cross-section measurements.
 - o calculated with features of jet constituents (pt, energy, correlation,...)
 - sensitive to jet origins and might dark jet

Z + Charm Jets Measurement

- Measure <u>fiducial kinematic</u> observables QCD Predictions, MC Modelling, charm and gluon PDFs
 - Jet multiplicity and jet properties: N_{jets} , p_T^c , Y_c
 - Dijet distributions: m_{cc} , p_{cc}^T , $\Delta \phi_{cc}$, ΔY_{cc} , ΔR_{cc}
 - Boson and Boson-jet distributions: p_T^Z , Y_Z , ΔY_{Zc}
- Measure <u>optimal observables</u> Sensitive to intrinsic charm, glue splitting, jet origins
 - Ratio of central/forward, p_T^{cc}/m_{cc}
 - LJP of leading c-jet and resolved 2 c-jets, observable related to q/g difference
- Measure <u>Jet substructure observables</u> Parton shower, W/Z/H/Top/quark-gluon/polarization tagger designment
 - Select from jet mass, charge, shapes, splitting functions, Lund jet plane
 - Studies show which's topology-sensitive @ JSS distributions, flavour-sensitive @ LJP of b/c/l jets

Collaboration effort

- Charm tagger (GN2v01) calibration
- Background estimation for NP search with mono-charm

More words:

QCD studies in the **boosted regime** is **important**, as **tagging performance decreases in high pT** besides the necessary of testing theoretical predictions

Conclusion

- EWK gauge bosons production associated with jets represents an essential ingredient of Standard Model
 - V + b/c jets measurement as benchmarks for theoretical predictions
 - o allow to explore the sensitivity to new phenomenon i.e. intrinsic charm
 - provide useful inputs for global fit PDF, sensitive to s-, c-, b-quark, and gluon PDFs
 - alignment of IRC jet-flavour algorithm in experimental and theoretical communities highly demanded to benefit from the precise NNLO calculations
 - Precise studies of jet substructures also well motivated from both of SM and BSM views

- ✓ Multi-tags in the collinear cases might be inaccurate in the MC mimicing the high < µ > experimental conditions → possibly large unfolding uncertainty
- How to implement IRC-safe flavour algorithms into the ATLAT Jet reconstruction algorithm/analysis level properly should be clear

Worthy to make the attempts in Run3 ZHF measurements

Thank You!

* Back up

Event display of Z+>=2b-jets candidate from data recorded by ATLAS

V + jets at hadron collider

- ✤ V(=W/Z) + jets production has the largest cross-section after multi-jet and inclusive V-boson productions
 - At LHC, 1/3 of W/Z production is in association with a jet (p_T > 30 GeV)

-- standard candle at LHC for Modellings and Calibrations

 10^{-2}

 10^{-3}

z

tī

vv

Pile-up Effects on Flavour Tagging Performance

Eur.Phys.J.C 83 (2023)

DL1r

- High level algorithm operating on outputs
 from intermediate track and vertex algorithms
- DL1r discriminant calculated from

the b-, c- and light-jet probabilities

$$D_{\text{DL1r}} = \ln(\frac{p_b}{f_c \cdot p_c + (1 - f_c \cdot p_{light})})$$

V + HF jets as background for Higgs and NPs

V+HF jets dominant background & modelling as the limiting factor for a good sensitivity *

Example 1: VV+VH semi-leptonic measurement and search 0

Fit performed with Vjets divided to HL, LL, HH categories with floating normalization SFs

- Data

W+jets

√s=13 TeV, 140 fb

VV1Lep MeraHP Inclusive MCR

- V+jets mis-modelling drastically decrease the sensitivity
- Importance to well describe *separated* V+HF (L) processes by predictions

Differential Z+>= 1b-jet cross-section results (Norm.)

Differential Z+>= 2b-jet cross-section results (Norm.)

Intrinsic Charm

- Idea of intrinsic charm (IC)¹ contribution to proton PDF debated for ~40 years
 - Initially introduced to describe enhanced charmed hadron production at ISR
 - Still no reliable experimental confirmation/exclusion
- Valence-like c quarks have large $x \ge 0.1$, unlike perturbative charm with smaller x
 - Understanding of heavy quark PDF is very important for Higgs and BSM background modelling
 - Studying charm associated production with Z or γ more sensitive than inclusive charm production^2
 - IC sensitive in $x_c > 0.1$, where $x_c \ge x_F^V = \frac{2p_T^V}{\sqrt{s}} \sinh(\eta_V)$
 - Selection criteria hard c-jet and Z in forward region

CT14 and NNPDF

- Provide PDF sets with inclusion of IC in the fits according to BHPS model
- PDF reweighting is used to model the IC effect with Z+jets NLO sample

$$\frac{w(|uudc\bar{c}\rangle)}{|BHPS1|} \frac{\langle x \rangle_{IC}}{1.1\%} \frac{w(x_1, x_2, Q)}{0.6\%} = \frac{f_i^{\text{new}}(x_1, Q^2)f_j^{\text{new}}(x_2, Q^2)}{f_i^{\text{old}}(x_1, Q^2)f_j^{\text{old}}(x_2, Q^2)}$$

CT18FC PDF set

- ► An updated CTEQ paper on IC PDFs: PLB 843 (2023) 137975 C
 - ► All PDF sets available at web page C, also included in LHAPDF
- ► Baseline no-IC PDF to be used: **CT18NNLO** (14000)
 - Uncertainties: 58 eigenvector variations
- ► Four variants including IC:
 - 1. CT18 BHPS3 (14087) similar to earlier BHPS variants, different amount of IC (?)
 - 2. CT18 MBM-C (14090) meson-baryon model (confining), asymmetric $c\bar{c}$ contributions
 - 3. CT18 MBM-E (14093) meson-baryon model (effective-mass), similar to 2, but more constrained
 - 4. CT18X BHPS3 (14096) same as 1, but using **CT18XNNLO** fit as a baseline (with DIS data fitted using x-dependent μ_F to model small-x saturation)
- ► For each of them two variations with $\Delta \chi^2 = 10, 30$
 - $\Delta \chi^2 = 30$ standard CT 68% CL tolerance
 - $\Delta \chi^2 = 10$ more restrictive, compatible with MSHT20 tolerance
- Options suggested by Tim Hobbs:
 - Minimal: use CT18 BHPS3 and CT18 MBM-C in comparison to nominal CT18NNLO, evaluate uncertainties with $\Delta \chi^2 = 30$ variations
 - Ideal: test all options (note that for CT18X BHPS3 need a different nominal CT18XNNLO)

Forward/Central ratio of Z pT

Feynman-variable $x_F = 2p_Z/\sqrt{s}$ 10^{7} dσ /dx_F [pb] $Z/\gamma^{*}(\rightarrow II) + \geq 1$ c-jet dσ /dp_T [pb/GeV $Z/\gamma^*(\rightarrow II) + \ge 1$ c-jet ATLAS WIP 10⁴ ATLAS WIP 10^{6} 13 TeV, 140 fb⁻¹ Here Data 10³ 13 TeV, 140 fb⁻¹ Here Data 10⁵ $10^2 = anti-k_t$ jets, R = 0.4 anti- k_{t} jets, R = 0.4 $10^4 = p_{\tau}^{jet} > 20 \text{ GeV}, |y^{jet}| < 2.5$ $10 = p_T^{jet} > 20 \text{ GeV}, |y^{jet}| < 2.5$ ---- CT14nnlo --- CT14nnlo --- CT18NNLO --- CT18NNLO 10³ ---- CT18XNNLO 10² 10 10 10^{-2} 10-8 10 10^{-1} 10^{-5} 10^{-2} 10 1.4 NNPDE40 (LHCbZc) ---- NNPDE40 (LHCb+EMC NNPDF40 (LHCbZc) MC/Data MC/Data 1.2 1.2 0.8 0.8 0.6 0.6 1.4 --- CT14nnlo 1.4 - BHPS1 BHPS2 - CT14nnlo MC/Data MC/Data 1.2 1.2 0.8 0.8 0.6 0.6 1.4 1.4 MC/Data MC/Data 1.2 0.8 0.8 0.6 0.6 10^{-2} 10^{-1} 10^{2} 10^{3} p_(leading c-jet) [GeV] x_F (leading c-jet)

Flavoured Jets at the LHC

NLO+PS (5FNS) + NLO EW Correction

- Data: full Run 2, 140 fb⁻¹
- MC samples
 - MGaMC@NLO with FxFx merging up to 3 partons in NLO ME!
 - Sherpa 2.2.11 up to 2 partons in NLO ME
 - Besides the QCD-only nominal, Sherpa provides on-the-fly weights including approximate NLO electroweak corrections using up to three different approaches
 - ⇒ additive, multiplicative, exponentiated

Approach that yields the smallest overall correction with respect to the QCD-only curve as the nominal prediction Assign the difference to the curve with the largest correction from other approaches as a (symmetrised) uncertainty

*backup

NLO+PS (5FNS) + NLO EW Correction: Z+≥1b

• Good agreement for both of MG FxFx and Sherpa 2.2.11, with the former giving better modelling

- NLO EW correction is negligible, with difference from QCD-only only visible in the high p_T^Z region (~ 10%)
- With the uncertainty taken from different EW virtual correction approaches at 10% ~ 20% at the most

NLO+PS (5FNS) + NLO EW Correction: Z+≥1c

• Mis-modelling visible in the high p_T^Z tails, with softer spectrum for lead c-jet pT and xF than data

- NLO EW correction is negligible, with difference from QCD-only only visible in the high p_T^Z region (~ 10%)
- With the uncertainty taken from different EW virtual correction approaches at 10% ~ 20% at the most

NLO+PS (5FNS) + NLO EW Correction: Z+≥2b

- Perfect modelling for the shape of $\Delta \phi_{bb}$ and overall agreement for m_{bb}
- Sherpa gives much larger theoretical uncertainty as the case in Z+1b

• QCD scale uncertainty (for missing higher order effects) reduced largely for p_T^Z (fw | cen)