Jet substructure studies at the ATLAS experiment

Flavoured Jets at the LHC

Radosław Grabarczyk, Alberto Rescia, Federico Sforza

11 June 2024

Motivation & Aim

- Aim to measure JSS observables on jets in $Z(\ell^+\ell^-) + b\bar{b}$ events
 - Primary Lund Jet Plane
- Radiation pattern around b-quarks is largely unknown!
- Better understanding of radiation can lead to the development of state-of-the-art taggers
- Measurement provides data for MC tuning of HF effects
- Process important background for many Higgs and BSM analyses
- Flavour-aware algorithms will be used to define truth-level jets for unfolding in this analysis

Observables

Lund Jet Plane

- An angular-ordered representation of the clustering history of a jet
- ► (ln(1/∆), ln(k_t)) coordinates are plotted in a plane
- Kinematic regions within a jet are factorised

arXiv:1807.04758

- Ratio of n-point energy correlator functions
- Discriminator of 1-prong vs. 2-prong jets
- Defined only in boosted regime

arXiv:1001.5027

Other observables

- Jet mass
- Leading jet p_T

A note on the Lund Jet Plane

- To ease the comparison of algorithms, the "unrolled" Lund Jet Plane will be presented
- Starting from bottom row, plot entries in each bin row-by-row, moving from left to right and proceeding from top to bottom

 $LP_{bin} = x_{bin} + (y_{bin} * n_{bins})$

 Additionally, a cut of ln(k_t) > -1.5 is applied to limit ourselves to the perturbative regime

Details & Selections

- Analysis has 4 signal regions (SRs):
 - Double b-tag and double anti b-tag
 - Boosted and resolved topologies

Analysis selections:

- Require 2 same-flavour opposite sign leptons
- ▶ $p_{T,\ell\ell} > 27 \text{ GeV } \& m_{\ell\ell} \in [76, 106] \text{ GeV}$

Resolved:

- Identify 2 (anti) b-tagged R = 0.4 jets with p_T > 20 GeV & |y| < 2.5</p>
- Measure JSS observables on these jets

Boosted:

- 1 R = 1.0 jet with p_T > 200 GeV & |y| < 1.5</p>
- Large-R jet double-b-tagged when 2 b-jets associated to it
- Measure JSS observables on this jet
- Jets selected with high purity *b*-tagging algorithm (70% efficiency) in boosted and resolved analysis regions
- Double anti-b-tagged selection requires 0 b-tagged jets

Details & Selections

- Analysis has 4 signal regions (SRs):
 - Double b-tag and double anti b-tag
 - Boosted and resolved topologies

Analysis selections:

For this study:

- Compare JSS observables obtained from jets clustered with different flavour-aware algorithms to those obtained from experimental labels
- NO ATLAS DATA all results at truth (hadron) level!
- Study performed analysing a Rivet routine with same analysis selections (Rivet v3.1.7)
- Rivet routine basically finalised can debate today! boosted and resolved analysis regions
- Double anti-b-tagged selection requires 0 b-tagged jets

Generate 500k events in each SR at LO w/ MG5_aMC v3.5.0 Resolved + Boosted

1.
$$pp \rightarrow Z(\ell^+\ell^-) + b\bar{b}$$

- 2. $pp \rightarrow Z(\ell^+\ell^-) + jj$, j = u, d, s, \bar{u} , \bar{d} , \bar{s} , g
- ▶ In boosted case, apply cut $p_{T,\ell\ell} > 150 \text{ GeV}$
- Shower with Pythia v8.309 with hadronisation and MPI

Jet reconstruction

- 1. Cluster all¹ visible, final state particles into jets
 - Instructions from theorists for flavour-aware algorithms: cluster jets with undecayed B-hadron
- 2. Apply cuts and flavour selection on jets
- 3. Identify charged constituents which satisfy p_T cuts
- 4. Identify constituents from B-hadron decays and construct B-hadron charged momentum
 - Boosted case: account for the fact that descendants of multiple hadrons may end up in jet
 - Separately reconstruct charged momentum of each hadron with available constituents
- 5. Recluster suitable constituents using same jet algorithm
- 6. Require at least as many jets as originally found, forgoing a p_T cut
 - If more jets reclustered than input, consider only leading jets
- 7. Calculate JSS observables on these jets

 $^{^1}Following prescription for appropriate ATLAS truth jet collection, in this case <code>ANTIKT4TRUTHWZJETS</code> and <code>ANTIKT10TRUTHJETS</code>$

Experimental considerations

- 1. Detector resolution constrains us to charged component of jet!
 - ▶ Inner tracker resolution ~0.01 rad
 - Allows for finer reconstruction of Lund Plane
 - Reconstructed track have $p_T > 500$ MeV
- 2. Need to include b-hadron decay products
 - Currently truth-level jets are defined with the visible final state in experiments
 - Decay products must still be removed a posteriori as they would "contaminate" some regions of Lund Plane where effects such as dead cone could be visibile
- 3. For flavour labelling purposes in ATLAS, only heavy flavour hadrons with $p_T > 5$ GeV are considered
- 4. In ATLAS, a jet is labelled as a *b*-jet if a *B* hadron is found within $\Delta R(B, jet) < 0.3$

Flavour algorithms

Algorithms considered

- 1. Anti- k_t jets with CMS-style ghost flavour labelling
- 2. Anti- k_t jets with ATLAS-style ΔR flavour labelling
- 3. IFN algorithm
- 4. CMP algorithm
- 5. GHS algorithm
- 6. SDFlav algorithm
- ATLAS & CMS: require match to (2) 1 B-had in (boosted) resolved regime

Flavour-aware algorithms

- \blacktriangleright Resolved regime: require single label per jet, make no distinction between b and \bar{b}
- Boosted regime: require large-R jet to have no overall flavour, but check if bb cancellation occurs within jet

Algorithm settings

1. IFN

$$\blacktriangleright \omega = 3.0 - \alpha$$

FlavSummation = FlavRecombiner::net

- 2. CMP
 - ▶ *a* = 0.1
 - CorrectionType = OverAllCoshyCosPhi_a2
 - ClusteringType = DynamicKtMax
- 3. GHS

$$\blacktriangleright \omega = 2.0$$

- ▶ p_T cut = 20.0 GeV
- 4. SDFlav

$$rac{1}{z}$$
 cut = 0.1

Legend

BLACK — ATLAS BLUE — CMS RED — IFN GREEN — CMP CYAN — GHS MAGENTA — SDFlav

Results

Disclaimer: all work in progress!

$Z + b\bar{b} p_T$ distribution

- No large differences in shape of p_T distribution of leading jet
- At low p_T some differences arise between ATLAS/CMS algorithms and flavour-aware clustering algorithms
- Large differences seen in charged jet
 p_T distribution
 - Effect due to different constituents
 - ATLAS/CMS include decay products of B-hadrons
 - Flav. algs. include undecayed hadrons

Leading jet

pT (GeV)

All algorithms show same shape

Dijet mass

Some differences observed in *b*-jets due to differeing constituents between labelling schemes

LJP seems to be mostly independent of choice of algorithm Differences again present for *b*-jets due to different constitutents in experimental/theoretical labelling schemes

Boosted results

Large-R jet p_T distribution

Shapes mostly consistent

Large-R jet mass distribution

ATLAS deviates significantly due to small cone size used for labelling Some deviations also shown by CMP for light jets Jet $p_{\mathcal{T}} \in [300, 400]~\text{GeV}$

Again no major shape differences

- Major differences arise due to different definitions of input particles between theory/experiment
 - Need to harmonise definitions if we wish to apply new algorithms experimentally!
- CMS and especially ATLAS labelling for large-R jets needs improvement
 - Need to clearly define what it means to double-tag a large-R jet
- All algorithms besides CMP behave similarly for large-R jets

Work in progress! More studies needed