Thresholds effects on quarkonium spectrum in an EFT formalism

Exotic Hadron Spectroscopy 2024 Swansea University, 2 - 4 July

Tommaso Scirpa (TU Munich)

in collaboration with Nora Brambilla, Abhishek Mohapatra, Antonio Vairo

ТШ

Outline

- Experimental Picture
- The BOEFT approach from a lattice perspective
- BOEFT Lagrangian and spectra alignment
- Threshold corrections: coupled system approach
- Threshold corrections: self-energy approach
- Comparison among the methods
- Conclusions

Experimental Picture

Spectrum: charmonium sector

The BOEFT approach from a lattice perspective

A Pictorial Representation

Meson-Antimeson threshold

$oldsymbol{K}^P_{ar{q}}\otimesoldsymbol{K}^P_q$	K^{PC}	Static energies $D_{\infty h}$
$(1/2)^- \otimes (1/2)^+$	0^{-+}	$\{\Sigma_u^-\}$
	1	$\{\Sigma_g^+,\Pi_g\}$
$(1/2)^- \otimes (1/2)^-$	0^{++}	$\{\Sigma_g^+\}$
	1^{+-}	$\{\Sigma_u^-,\Pi_u\}$
$(1/2)^- \otimes (3/2)^-$	1^{+-}	$\{\Sigma_u^-, \Pi_u\}$
	2^{++}	$\{\Sigma_q^+, \Pi_q, \Delta_q\}$

For two systems to interact they need to be in the same D_{wh} reps.

The cylindrical group D_{wh} reps: Λ_{η}^{σ} (LDF)

 $|\mathbf{r} \cdot \mathbf{K}_{light}| \equiv \Lambda = 0, 1, 2, \dots$ corresponding to $\Sigma, \Pi, \Delta, \dots$ CP eigenvalue: $\eta = +1 \ (g), -1 \ (u)$ Reflection symm. about a plane containing $Q\bar{Q}$: $\sigma = \pm 1$ $C(\mathbf{r}, t)$ Static quarks correlation matrix

$$(t) = egin{pmatrix} W_{\Psi\Psi}(m{r}) & W_{\Psi M}(m{r}) & W_{\Psi M_s}(m{r}) \ W_{M\Psi}(m{r}) & W_{MM}(m{r}) & W_{MM_s}(m{r}) \ W_{M_s\Psi}(m{r}) & W_{M_sM}(m{r}) & W_{M_sM_s}(m{r}) \end{pmatrix}, \quad m{r} = m{r}_1 - m{r}_2$$

The BOEFT approach from a lattice perspective

A parametrization for the static Hamiltonian

from Phys.Lett.B 854 (2024) $H(r,t) = \begin{pmatrix} \hat{V}(r) & \sqrt{2}g_l & g_s \\ \sqrt{2}g_l & E_1 & 0 \\ g_s & 0 & E_2 \end{pmatrix}, \quad \hat{V}(r) = \hat{V}_0 + \frac{\gamma}{r} + \sigma r$ $\sigma = 0.199 \ GeV^2 \quad \gamma = -0.434 \quad \hat{V}_0 = -1.144 \ GeV$ $\sqrt{2}g_l = 0.050 \ GeV \quad g_s = 0.018 \ GeV$ $E_1 = 0.005 \ GeV \quad E_2 = 0.138 \ GeV$

Our mixing potential beyond the fit region

Adiabatic levels of the static system from Phys.Lett.B 854 (2024)

 $m_K \sim 440 - 480 \; GeV$

Fit region_{exc. levels} $\sim 0.9 - 1.5 \ fm$

String breaking region $\sim 1.2-1.3~fm$

BOEFT Lagrangian and spectra alignment

$$\begin{aligned} & \text{The Lagrangian (leading order)} & \text{Effective}_{\text{Field}} & \text{E}_{\text{Physical Scales}} \\ & \mathcal{L}_{BOEFT} = \int d^3r \left\{ \Psi^{\dagger}(r,t) \left(i\partial_t + \frac{\nabla_r^2}{m_Q} - V_{\Psi} \right) \Psi(r,t) - \sum_{M,M_s} V_{\Psi M_{\Sigma}} \left(M_{\Sigma_s^{\dagger}}^{\dagger}(r,t) \Psi(r,t) + h.c. \right) & \text{QCD} \\ & + \sum_{M,M_s} M_{\Sigma_s^{\dagger}}^{\dagger}(r,t) \left(i\partial_t + P_{\Sigma_s^{\dagger}}^{\dagger} \frac{\nabla_r^2}{m_Q} P_{\Sigma_s^{\dagger}} - V_{M_{\Sigma_s^{\dagger}}} \right) M_{\Sigma_s^{\dagger}}(r,t) \right\} & \text{NRQCD} \\ & \text{AccD} \sim \text{me v} \\ & \text{Spin independent lagrangian: quarkonium and threshold states are spin averaged} \\ & \text{Fixing the spectrum and the thresholds} \\ & \left((\Upsilon)_{1s} \middle| \left(-\frac{\nabla_r^2}{m_b} + V_{\Psi} \right) \middle| (\Upsilon)_{1s} \right) \stackrel{1}{=} m_{1s}^b - 2m_B^{apin arg} + \frac{a_1}{m_b} + \mathcal{O}(v^4) \implies a_1 = 0.025 \text{ GeV}^2 \\ & \text{Mass relations} \end{aligned} \\ & \text{All the physical values are spin averaged} \\ & \text{Natural value of the mass: mb = ms} \\ & \left((\Upsilon)_{1s} \middle| \left(-\frac{\nabla_r^2}{m_b} + \frac{\gamma}{r} + \sigma r + 2m_b \right) \middle| (\Upsilon)_{1s} \right) = m_{1s}^b + \mathcal{O}(v^4) \\ & m_B^{spin arg} = m_B^{static} + \frac{a_1}{m_b} + \mathcal{O}(v^4) \end{aligned}$$

BOEFT Lagrangian and spectra alignment

ТΠ

Charmonium spectrum

Bottomonium spectrum

 $m_c = m_D$

 $m_b = m_B$

nL	$\frac{\text{charmonium}}{E_{PDC}^{spin\ avg.}(MeV)}$	$E_{th}(MeV)$
1s	3068	3120
2s	3674	3704
3s		4134
4s		4501
5s		4831
1p	3525	3531
2p		3982
3p		4362
4p		4700
5p		5011
1d		3817
2d		4212
3d		4561
4d		4880
5d		5177

Threshold values

Thr.	$E_{PDG}^{spin avg.}(GeV)$	$E^{th.}_{M\bar{M}}({\rm GeV})$
$D\bar{D}$	3.946	3.938
$D_s \overline{D}_s$	4.152	4.070
$B\bar{B}$	10.628	10.628
$B_s \bar{B}_s$	10.806	10.760

Experimental values taken from R.L. Workman *et al.* (Particle Data Group)

	bottomonium	
nL	$E_{PDG}^{spin \; avg.}(MeV)$	$E_{th}(MeV)$
1s	9445	9445
2s	10017	9990
3s		10335
4s		10616
5s		10865
1p	9900	9884
2p	10260	10240
3p		10529
4p		10782
5p		11012
1d		10127
2d		10427
3d		10687
4d		10923
5d		11141

Threshold corrections: coupled system approach

Bound state (below threshold) e. o. m.

$$\begin{pmatrix} -\frac{\nabla^2}{m_Q} + V_{\Psi} & V_{\Psi M_{\Sigma}} & V_{\Psi M_{S\Sigma}} \\ V_{\Psi M_{\Sigma}} & \vec{P}_{\Sigma}^*(-\frac{\nabla^2}{m_Q})\vec{P}_{\Sigma} + V_M & 0 \\ V_{\Psi M_{S\Sigma}} & 0 & \vec{P}_{\Sigma}^*(-\frac{\nabla^2}{m_Q})\vec{P}_{\Sigma} + V_{M_s} \end{pmatrix} \begin{pmatrix} \psi_{Q\bar{Q}}(\boldsymbol{r}) \\ \psi_{M\bar{M}}(\boldsymbol{r}) \\ \psi_{M_s\bar{M}_s}(\boldsymbol{r}) \end{pmatrix} = E \begin{pmatrix} \psi_{Q\bar{Q}}(\boldsymbol{r}) \\ \psi_{M\bar{M}}(\boldsymbol{r}) \\ \psi_{M_s\bar{M}_s}(\boldsymbol{r}) \end{pmatrix}$$

Wavefunctions

$$\begin{split} \boldsymbol{\psi}_{Q\bar{Q}}^{nlm_l}(\boldsymbol{r}) &= \phi_{nl}(r)Y_{lm_l}(\hat{\boldsymbol{r}}) \\ \boldsymbol{\psi}_{M\bar{M}}^{nLm_L}(\boldsymbol{r}) &= \phi_{nL}(r)Y_{Lm_L}(\hat{\boldsymbol{r}}) \\ \boldsymbol{\psi}_{M_s\bar{M}_s}^{nL_sm_{L_s}}(\boldsymbol{r}) &= \phi_{nL_s}(r)Y_{L_sm_{L_s}}(\hat{\boldsymbol{r}}) \end{split}$$

Selection rules

 $l \stackrel{!}{=} L \stackrel{!}{=} L_s$

 $m_l \stackrel{!}{=} m_L \stackrel{!}{=} m_{L_s}$

Threshold corrections: coupled system approach

nL

Threshold corrections: $\Delta E_{M\bar{M}}^{nl} = E_{M\bar{M}}^{nl \ coupl.} - E^{nl}$

Charmonium

Bottomonium

 $\left|\Delta E_{B\bar{B}}(MeV)\right|\Delta E_{B_s\bar{B}_s}(MeV)\left|\Delta E_{tot}(MeV)\right|$

nL	$\Delta E_{D\bar{D}}(MeV)$	$\Delta E_{D_s\bar{D}_s}(MeV)$	$\Delta E_{tot}(MeV)$
1s			
2s	-3		-4
1p	-1		-1
2p		-1	
1d	-3		-3

1s2s-3-33s -16-164s1p-2-22p-7-73p1d-1-1 2d-4-4 3d $^{-1}$

- threshold corrections of few MeVs
- bigger corrections for states nearer to the threshold

Threshold corrections: coupled system approach

A 2p charmonium state just below the DD threshold via mixing coupling fine-tuning? original lattice coupling $\sqrt{2}g_l = 0.050~GeV$

fine-tuned coupling $\sqrt{2}g_l = 0.098 \; GeV$

Mass

$$D\bar{D}^{spin avg.} = 3.938 \ GeV$$
$$M^{fine-tun.}_{\chi_{c 2p}} = 3.937 \ GeV$$

Composition

$$P_{c\bar{c}} = 61\%$$
 $P_{D\bar{D}} = 39\%$

Radius

$$\left\langle (\chi_c)_{2p} \middle| \left(\frac{1}{r}\right) \middle| (\chi_c)_{2p} \right\rangle = 1.24 \ fm^{-1}$$

Threshold corrections: self-energy approach

I

Exact charmonium propagator

$$\int dt e^{iEt} \langle 0|T \left\{ \Psi(t, \boldsymbol{r}) \Psi^{\dagger}(t, \boldsymbol{r}') \right\} |0\rangle_{exact} = \sum_{nl} i \frac{\psi_{nl}(\boldsymbol{r}) \psi_{nl}^{*}(\boldsymbol{r}')}{E - E_{nl} - \Sigma_{nl}(E)}$$
Quarkonium bound states

$$|q\bar{q}
angle_{nl} = \int d^3 oldsymbol{r} \ \phi_{nl}(r) Y_{lm_l}(\hat{oldsymbol{r}}) \ \Psi^{\dagger}(oldsymbol{r}) \ |0
angle$$

Meson-Antimeson states

$$M\bar{M}\rangle_{\Sigma_{g}^{+}} = (-i)^{K} \int d^{3}r \sum_{l=|L-K|}^{L+K} \left(4\pi i^{-l} j_{l}(kr)\right) C_{L0K0}^{l0} Y_{L,m_{L}} M_{\Sigma_{g}^{+}}^{\dagger} |0\rangle$$

Form factor and selection rules

$$f_{nl}^{l'}(k) = C_{l0K0}^{l'0} \int dr \ r^2 \phi_{nl}(r) V_{\Psi M_{\Sigma}}(r) j_{l'}(kr)$$
$$l \stackrel{!}{=} L$$
$$m_l \stackrel{!}{=} m_L$$

Diagrams resummation

$$+ \underbrace{\overset{1}{\longrightarrow}}_{+} \underbrace{\overset{2}{\longleftarrow}}_{+} + \underbrace{\overset{1}{\longrightarrow}}_{+} \underbrace{\overset{2}{\longleftarrow}}_{+} \underbrace{\overset{1}{\longrightarrow}}_{+} \underbrace{\overset{2}{\longleftarrow}}_{+} + \ldots$$

similar methods in *Phys.Rev.D* 106 (2022)

Poles shift and decay rates

$$Re \ \Sigma_{nl}^{M\bar{M}}(E) = \frac{2m_Q}{\pi} \ \int dk \ k^2 \ \frac{\left(\sum_{l'=l-1}^{l+1} f_{nl}^{l'}(k)\right)^2}{m_Q(E-V_M)-k^2}$$

$$m \ \Sigma_{nl}^{M\bar{M}}(E) = \Gamma_{nl}^{M\bar{M}}(E) = 2m_Q \ \sqrt{m_Q \ (E - V_M)} \ \left(\ \sum_{l'=l-1}^{l+1} f_{nl}^{l'}(k) \right)^2_{1}$$

Threshold corrections: self-energy approach

Threshold corrections: $\Sigma_{nl}(E_{nl})$

nL	$\Delta E_{D\bar{D}}(MeV)$	$\Delta E_{D_s \bar{D}_s}(MeV)$
1s	-1	
2s	-4	
1p	-2	
2p		$^{-1}$
1d	-4	

nL	$\Delta E_{B\bar{B}}(MeV)$	$\Delta E_{B_s\bar{B}_s}(MeV)$
1s		
2s	-2	
3s	-5	$^{-1}$
4s	-23	-1
1p	-1	
2p	-5	-1
3p	-14	-1
1d	-3	
2d	-4	$^{-1}$
3d		-2

Experimental data

 $\Gamma(\psi(3770) \to D\bar{D}) \sim O(20) \ MeV$

S-wave D-wave quarkonium mixing not considered in our calculations

 $\Gamma(\Upsilon(4s) \to B\bar{B} \sim O(20) MeV$

This state is below the BB spin avg. threshold

$$\Gamma(\Upsilon(10860) \to B\bar{B}_{spin avg.}) \sim O(20) \ MeV$$

Experimental values taken from R.L. Workman et al. (Particle Data Group)

Decay rates: $\Gamma_{nl}^{M\bar{M}}(E_{nl})$

nL	$\Gamma_{D\bar{D}}(MeV)$	$\Gamma_{D_s\bar{D}_s}(MeV)$
3s	5	7
4s	3	
5s	5	
2p	8	
3p	12	1
4p	16	
5p	15	2
2d	27	
3d	24	1
4d	18	1
5d	15	2

nL	$\Gamma_{B\bar{B}}(MeV)$	$\Gamma_{B_s\bar{B}_s}(MeV)$
5s		2
4p		1
5p	34	
3d	1	
4d	42	3
5d	29	1

Threshold corrections: self-energy approach

Some illustrative plots

$$Im \ \Sigma^{B\bar{B}}_{5s}(E)$$

Weak dependence from the energy of the state far from threshold

 $Re \Sigma_{4s}^{B\bar{B}}(E)$

Strong dependence by the energy of the state even far from threshold

11.0

11.1

11.2

Order of magnitude of the decay rates within the uncertainties is compatible with the experimental data

Comparison among the methods DD threshold

--- coupl. syst. corr

--- self-en. (E indep)

self-en. (E dep)

1s-state flatlin mixing potential

0.00

-0.02

-0.04

-0.08

-0.10

0.0

-0.1

-0.3

-0.4

-0.5 -0.6

-0.7

0.0

0.1

0.2

0.3

0.4

mixing coupling (GeV)

0.5

0.6

0.7

corr. (GeV) -0.2

DD thresh.

0.0

0.1

0.2

0.3

0.4

(GeV)

corr.

DD thresh. -0.06

- the different methods agree in • the weak-coupling limit
- in the strong-coupling limit a fully non-perturbative treatment (coupled system) is needed

Conclusions

- LQCD inputs needed for the BOEFT approach
- Different approaches to study the problem: coupled system & self-energy
- Possibility to fine-tune the mixing coupling to get just below threshold states for coupled system
- States close to the threshold receive bigger threshold corrections w.r.t. further ones
- Same predictions from the different methods (coupled system, self-energy) in the weak-coupling limit
- Decay rates key observable to test the model