Meson-meson scattering at large N_c

Jorge Baeza-Ballesteros

In collaboration with P. Hernández and F. Romero-López Based on arXiv/2202.02291 and ongoing work

IFIC, University of Valencia-CSIC

Exotic Hadron Spectroscopy 2024 - 4th July 2024

- 2 Chiral Perturbation Theory
- Scattering in the lattice
- 4 $\pi\pi$ scattering at threshold
- 5 Meson-meson scattering at large N_c
- 6 Summary and outlook

- 2 Chiral Perturbation Theory
- Scattering in the lattice
- 4) $\pi\pi$ scattering at threshold
- 5 Meson-meson scattering at large N_c
- Summary and outlook

Long-term goal: Understand subleading N_c effects in the lattice:

- Pion mass and decay constant [Hernández et al. 2019]
- $K o (\pi \pi)_{I=0,2}$ [Donini et al. 2016, 2020]
- Meson-meson scattering [JBB et al. 2022 and ongoing]

Long-term goal: Understand subleading N_c effects in the lattice:

- Pion mass and decay constant [Hernández et al. 2019]
- $K o (\pi \pi)_{I=0,2}$ [Donini et al. 2016, 2020]

Large $N_{\rm c}$ + Unitarized ChPT $\longrightarrow N_{\rm c}$ scaling of resonances [Peláez 2004]

Large $N_{\rm c}$ + Unitarized ChPT \longrightarrow $N_{\rm c}$ scaling of resonances [Peláez 2004]

Model dependent + neglects subleading N_c

Large N _C	ChPT	Lattice QCD	2202.02291	Ongoing work	Summary
00000	000	000	000	0000000	
Tetraqu	arks at la	nrge N _c			

Recent controversy about the existence of tetraquarks at large $N_{\rm c}$

- [Coleman 1985]: Tetraquarks do not exist at large N_c
- > [Weinberg 2013]: Tetraquarks can exist at large N_c , with $\Gamma \sim 1/N_c$ (as ordinary resonances)
- \blacktriangleright [Knetch, Peris 2013]: $\varGamma\sim 1/N_c$ or $\varGamma\sim 1/N_c^2$ depending on the flavor structure
- > [Cohen, Lebec 2014]: Tetraquarks can only exist with $\Gamma \sim 1/N_c^2$ for fundamental fermions

Large N _C	ChPT	Lattice QCD	2202.02291	Ongoing work	Summary
00000	000	000	000	0000000	
Tetraqu	iarks at la	arge N _c			

Recent controversy about the existence of tetraquarks at large $N_{\rm c}$

- [Coleman 1985]: Tetraquarks do not exist at large N_c
- > [Weinberg 2013]: Tetraquarks can exist at large N_c , with $\Gamma \sim 1/N_c$ (as ordinary resonances)
- \blacktriangleright [Knetch, Peris 2013]: $\varGamma\sim 1/N_c$ or $\varGamma\sim 1/N_c^2$ depending on the flavor structure
- > [Cohen, Lebec 2014]: Tetraquarks can only exist with $\Gamma \sim 1/N_c^2$ for fundamental fermions

Lattice QCD can allow us to directly answer this question

Meson-	meson sc	attering at l	arge N_c		
00000	000	000	000	0000000	
Large N _C	ChPT	Lattice QCD		Ongoing work	

This talk: *N*_c scaling of meson-meson scattering

Meson-	meson sc	attering at l	arge N_c		
00000	000	000	000	0000000	
Large N _c	ChPT	Lattice QCD		Ongoing work	

$$m{N_{f}=4}~(m_{u}=m_{d}=m_{s}=m_{c})$$

Used to study $K
ightarrow\pi\pi$
[Donini et al. 2020]

Large N_c ChPT Lattice QCD 2202,02291 Ongoing work Summary 000000 000 0000000 0

$$m{N_{f}=4}~(m_u=m_d=m_s=m_c)$$

Used to study $K
ightarrow\pi\pi$
[Donini et al. 2020]

Degenerate mesons pions $M_{\pi} = M_{K} = M_{D} = M_{\eta}$

7 scattering channels

Large N_c ChPT Lattice QCD 2202.02291 Ongoing work Summary 000000 000 000 0000000 0

 $15 \otimes 15 = \frac{\text{even } J}{\pi^{+}\pi^{+}} \xrightarrow{\text{odd } J} \oplus \frac{\text{odd } J}{45 (SA)} \oplus \frac{\text{odd } J}{45 (AS)} \oplus \frac{\text{even } J}{20 (AA)} \oplus 15 \oplus 15 \oplus 1$ $D_{s}^{+}\pi^{+} - D^{+}K^{+}$

$$C_{SS} = D - C + (p_1 \leftrightarrow p_2)$$
$$C_{AA} = D + C + (p_1 \leftrightarrow p_2)$$
$$C_{SA} = D - C - (p_1 \leftrightarrow p_2)$$
$$C_{AS} = D + C - (p_1 \leftrightarrow p_2)$$

Large N_c ChPT Lattice QCD 2202.02291 Ongoing work Summary 000000 000 000 0000000 0

$$N_{f} = 4 (m_{u} = m_{d} = m_{s} = m_{c})$$
Used to study $K \rightarrow \pi\pi$
[Donini et al. 2020]
$$\longrightarrow Degenerate mesons pions$$

$$M_{\pi} = M_{K} = M_{D} = M_{\eta}$$
7 scattering channels

 $15 \otimes 15 = \frac{\text{even } J}{\pi^{+}\pi^{+}} \xrightarrow{\text{odd } J} \oplus \frac{\text{odd } J}{45 (SA)} \oplus \frac{\text{odd } J}{45 (AS)} \oplus \frac{\text{even } J}{20 (AA)} \oplus 15 \oplus 15 \oplus 1$ $D_{s}^{+}\pi^{+} - D^{+}K^{+}$

 $C_{SS} = D - C + (p_1 \leftrightarrow p_2)$ $C_{AA} = D + C + (p_1 \leftrightarrow p_2)$ $C_{SA} = D - C - (p_1 \leftrightarrow p_2)$ $C_{AS} = D + C - (p_1 \leftrightarrow p_2)$

Large
$$N_{c}$$
 counting
 $\mathcal{M}^{SS,AA} = \mp \frac{1}{N_{c}} \left(a + b \frac{N_{f}}{N_{c}} \pm c \frac{1}{N_{c}} \right) + \dots$

 $a, b, c \sim \mathcal{O}(1)$ constants

- 2 Chiral Perturbation Theory
- Scattering in the lattice
- 4) $\pi\pi$ scattering at threshold
- 5 Meson-meson scattering at large *N*c
- Summary and outlook

Large Ne ChPT Lattice QCD 2202.02291 Orgeng work Summary 0000 Orgeng work Orge

ChPT describes QCD in terms of pseudo-Goldstone bosons (pions)

$$\phi = \begin{pmatrix} \pi^{0} + \frac{\eta_{0}}{\sqrt{3}} + \frac{\eta_{c}}{\sqrt{6}} & \sqrt{2}\pi^{+} & \sqrt{2}K^{+} & \sqrt{2}D^{0} \\ \sqrt{2}\pi^{-} & -\pi^{0} + \frac{\eta_{0}}{\sqrt{3}} + \frac{\eta_{c}}{\sqrt{6}} & \sqrt{2}K^{0} & \sqrt{2}D^{+} \\ \sqrt{2}K^{-} & \sqrt{2}\bar{K}^{0} & -\frac{2\eta_{0}}{\sqrt{3}} + \frac{\eta_{c}}{\sqrt{6}} & \sqrt{2}D_{s}^{+} \\ \sqrt{2}\bar{D}^{0} & \sqrt{2}D^{-} & \sqrt{2}D_{s}^{-} & -\frac{3\eta_{c}}{\sqrt{6}} \end{pmatrix}$$
 (N_f = 4)

ChPT describes QCD in terms of pseudo-Goldstone bosons (pions)

$$\phi = \begin{pmatrix} \pi^{0} + \frac{\eta_{0}}{\sqrt{3}} + \frac{\eta_{c}}{\sqrt{6}} & \sqrt{2}\pi^{+} & \sqrt{2}K^{+} & \sqrt{2}D^{0} \\ \sqrt{2}\pi^{-} & -\pi^{0} + \frac{\eta_{0}}{\sqrt{3}} + \frac{\eta_{c}}{\sqrt{6}} & \sqrt{2}K^{0} & \sqrt{2}D^{+} \\ \sqrt{2}K^{-} & \sqrt{2}\bar{K}^{0} & -\frac{2\eta_{0}}{\sqrt{3}} + \frac{\eta_{c}}{\sqrt{6}} & \sqrt{2}D^{+}_{s} \\ \sqrt{2}\bar{D}^{0} & \sqrt{2}D^{-} & \sqrt{2}D^{-}_{s} & -\frac{3\eta_{c}}{\sqrt{6}} \end{pmatrix}$$
 (N_f = 4)

Most general lagrangian with QCD symmetries

$$\mathcal{L}_{2} = \frac{F^{2}}{4} \operatorname{Tr}[\partial_{\mu} U \partial^{\mu} U^{\dagger}] + \frac{F^{2} B_{0}}{2} \operatorname{Tr}[\chi U^{\dagger} + \chi^{\dagger} U] \quad (2 \text{ LECs}) \quad \begin{array}{c} F^{2} \sim \mathcal{O}(N_{c}) \\ B_{0}, M_{\pi} \sim \mathcal{O}(1) \\ \mathcal{L}_{4} = \sum_{i=0}^{12} L_{i} O_{i} \quad L_{i} \sim \mathcal{O}(N_{c}) \text{ or } \mathcal{O}(1) \quad (13 \text{ LECs}) \end{array}$$

Large N _C	ChPT	Lattice QCD		Ongoing work	
00000	000	000	000	0000000	0
ChPT at	large <i>N</i> c				

At large $N_{\rm c}$, the η' needs to be included

$$M_{\eta'}^2 = M_{\pi}^2 + \frac{2N_f \chi_{top}}{F_{\pi}^2} \xrightarrow{F_{\pi}^2 \sim \mathcal{O}(N_c)}_{\text{large } N_c} M_{\pi}^2 + \dots \qquad [\text{Witten-Veneciano}]$$

Large N_c or U(N_f) ChPT [Kaiser, Leutwyler 2000]:

• Include η' in pion matrix

$$\phi|_{\mathsf{U}(N_{\mathsf{f}})} = \phi|_{\mathsf{SU}(N_{\mathsf{f}})} + \eta' \mathbb{1}$$

• Leutwyler counting scheme

$$\mathcal{O}(m_q) \sim \mathcal{O}(M_\pi^2) \sim \mathcal{O}(k^2) \sim \mathcal{O}(N_c^{-1})$$

 $\pi\pi$ scattering at LO in ChPT [Weinberg 1979]

$$k \cot \delta_0 = \frac{1}{a_0} + \dots$$

$$M_{\pi}a_0^{SS} = -\frac{M_{\pi}^2}{16\pi F_{\pi}^2} \int \propto -\frac{1}{N_c}$$

 $\pi\pi$ scattering at LO in ChPT [Weinberg 1979]

$$k \cot \delta_0 = \frac{1}{a_0} + \dots$$

$$M_{\pi}a_{0}^{SS} = -\frac{M_{\pi}^{2}}{16\pi F_{\pi}^{2}} \propto -\frac{1}{N_{c}} \qquad M_{\pi}a_{0}^{AA} = +\frac{M_{\pi}^{2}}{16\pi F_{\pi}^{2}} \propto +\frac{1}{N_{c}}$$

 $\pi\pi$ scattering at NNLO in large N_c ChPT [JBB at al. 2022]

$$M_{\pi}a_{0}^{SS,AA} = \mp \frac{M_{\pi}^{2}}{16\pi F_{\pi}^{2}} + f_{SS,AA}(M_{\pi}, F_{\pi}, L_{SS,AA}, K_{SS,AA})$$

 $\pi\pi$ scattering at LO in ChPT [Weinberg 1979]

$$k \cot \delta_0 = \frac{1}{a_0} + \dots$$

$$M_{\pi}a_{0}^{SS} = -\frac{M_{\pi}^{2}}{16\pi F_{\pi}^{2}} \propto -\frac{1}{N_{c}} \qquad \qquad M_{\pi}a_{0}^{AA} = +\frac{M_{\pi}^{2}}{16\pi F_{\pi}^{2}} \propto +\frac{1}{N_{c}}$$

 $\pi\pi$ scattering at NNLO in large N_c ChPT [JBB at al. 2022]

$$M_{\pi}a_{0}^{SS,AA} = \mp \frac{M_{\pi}^{2}}{16\pi F_{\pi}^{2}} + f_{SS,AA}(M_{\pi}, F_{\pi}, L_{SS,AA}, K_{SS,AA})$$

Large
$$N_c \longrightarrow L_{SS} = \underset{L_{AA}}{\overset{V_c L^{(0)}}{\longrightarrow}} + \underset{Same sign}{\overset{V_c L^{(0)}}{\longrightarrow}} + \underset{Opposite}{\overset{V_c L^{(0)}}{\longrightarrow}} + \underset{Same sign}{\overset{V_c L^$$

1) The large N_c limit of QCD

- 2 Chiral Perturbation Theory
- Scattering in the lattice
- 4) $\pi\pi$ scattering at threshold
- 5 Meson-meson scattering at large $N_{\rm c}$
- Summary and outlook

Meson-	meson so	attering in t	he lattice		
00000	000	0 00	000	0000000	0
Large N _c	ChPT	Lattice QCD		Ongoing work	Summary

Particle scattering cannot be directly studied in the lattice

Scattering Real-time process

Infinite volume

Asymptotic states

Lattice QCD

Euclidean time Finite volume Stationary states

Meson-	meson so	attering in t	he lattice		
00000	000	0 00	000	0000000	0
Large N _c	ChPT	Lattice QCD		Ongoing work	Summary

Particle scattering can be indirectly studied in the lattice

Stationary states

Finite-volume spectrum

Particle scattering can be indirectly studied in the lattice

Large N _C	ChPT	Lattice QCD	Ongoing work	
		000		
Two-parti	cle energy	v spectrum		

Use a set of operators, $O_i(t)$, with the correct quantum numbers

$$\mathcal{C}_{ij}(t) = \langle O_i(t) O_j(0)^\dagger
angle \qquad O_i \sim \pi(oldsymbol{k}_1) \pi(oldsymbol{k}_2)$$

Large N _c	ChPT	Lattice QCD		Ongoing work	
00000	000	000	000	0000000	
Two-parti	cle energy	/ spectrum			

Use a set of operators, $O_i(t)$, with the correct quantum numbers

$$\mathcal{C}_{ij}(t) = \langle O_i(t) O_j(0)^\dagger
angle \qquad O_i \sim \pi(oldsymbol{k}_1) \pi(oldsymbol{k}_2)$$

Solve generalized eigenvalue problem

$$C^{-1/2}(t_0)C(t)C^{-1/2}(t_0)v_n = \lambda_n(t)v_n \longrightarrow \lambda_n(t) \xrightarrow{T \gg t \gg t_0} A_n e^{-E_n t}$$

Fit for different fit ranges and extract the energies from plateaux

Large Ne ChPT Lattice QCD 2202.02291 Ongoing work Summary 000000 0

Two-particle QC (matrix equation):

[Lüscher 1986, Rummukainen and Gotlieb 1995, He et al. 2005]:

c

Two-particle QC (matrix equation):

[Lüscher 1986, Rummukainen and Gotlieb 1995, He et al. 2005]:

Reduces to **algebraic equation** assuming lowest partial wave:

Single-channel, *s*-wave
$$\longrightarrow$$
 $k \cot \delta_0 = \frac{2}{\gamma L \pi^{1/2}} Z_{00}^{P} \left(\frac{kL}{2\pi}\right)$
(Similar for *p*-wave)

1) The large N_c limit of QCD

- 2 Chiral Perturbation Theory
- 3 Scattering in the lattice
- 4 $\pi\pi$ scattering at threshold
 - 5 Meson-meson scattering at large N_c
- Summary and outlook

Large N _C	ChPT	Lattice QCD	2202.02291	Ongoing work	
			000		
Our latti	ce ense	mbles			

Goal: $N_{\rm c}$ scaling of $\pi\pi$ scattering and match to ChPT

Goal: $N_{\rm c}$ scaling of $\pi\pi$ scattering and match to ChPT

Ensembles with $N_f = 4$ dynamical quarks for $N_c = 3 - 6$ generated using **HiRep** [Del Debbio et al., 2010]

Summary of ensembles [Hernández et al., 2019] $a = 0.075 \text{ fm} \rightarrow [N_c = 3 - 6] \times [4 \text{ or } 5 \text{ values of } M_\pi] = 17 \text{ ensembles}$ $a = 0.065 \text{ fm} \rightarrow [N_c = 3] \times [2 \text{ values of } M_\pi] = 2 \text{ ensembles}$ $a = 0.059 \text{ fm} \rightarrow [N_c = 3] \times [2 \text{ values of } M_\pi] = 2 \text{ ensembles}$

$$M_{\pi}=350-590\,\mathrm{MeV}$$

Significant discretization effects in the **AA** channel

We compare scattering lengths to LO ChPT: $M_{\pi}a_0^{SS,AA} = \mp \frac{M_{\pi}^2}{16\pi^2 F_{\pi}^2}$

Simultaneous chiral and N_c fit of both channels to U() ChPT,

Jorge Baeza-Ballesteros

1) The large N_c limit of QCD

- 2 Chiral Perturbation Theory
- Scattering in the lattice
- $4 \pi \pi$ scattering at threshold
- 5 Meson-meson scattering at large $N_{\rm c}$
- Summary and outlook

Large N _C	ChPT	Lattice QCD		Ongoing work	
00000	000	000	000	●000000	
$\pi\pi$ scat	tering at	large <i>N</i> c			

AA channel is attractive ---- Possible tetraquark

Large N _C 00000	ChPT 000	Lattice QCD 000	2202.02291	Ongoing work	Summary O
$\pi\pi$ scatt	ering at	large <i>N</i> c			

AA channel is attractive \rightarrow Possible tetraquark

Recently found exotic states at LHCb [LHCb 2020, 2022]:

$$J = 0: \begin{array}{c} T^{0}_{cs0}(2900) \text{ in } D^{+}K^{-} \\ T^{++}_{c\bar{s}0}(2900) \text{ and } T^{0}_{c\bar{s}0}(2900) \text{ in } D^{\pm}_{s}\pi^{+} \end{array} \longrightarrow AA \text{ channel}$$

Large N _C 00000	ChPT 000	Lattice QCD 000	2202.02291	Ongoing work	Summary O
$\pi\pi$ scatt	ering at	large <i>N</i> c			

AA channel is attractive \rightarrow Possible tetraquark

Recently found exotic states at LHCb [LHCb 2020, 2022]:

$$J = 0: \frac{T_{cs0}^{0}(2900) \text{ in } D^{+}K^{-}}{T_{c\bar{s}0}^{++}(2900) \text{ and } T_{c\bar{s}0}^{0}(2900) \text{ in } D_{s}^{\pm}\pi^{+}} \longrightarrow AA \text{ channel}$$
$$J = 1: T_{cs1}^{0}(2900) \text{ in } D^{+}K^{-} \longrightarrow 84 \oplus 45(SA) \oplus 45(AS) \oplus 20 \oplus \dots$$

Large N _C	ChPT	Lattice QCD	2202.02291	Ongoing work	Summary
00000	000	000	000	0000000	0
$\pi\pi$ scatte	ering at la	irge N _c			

AA channel is attractive — Possible tetraquark

Recently found exotic states at LHCb [LHCb 2020, 2022]:

$$J = 0: \begin{array}{c} T_{cs0}^{0}(2900) \text{ in } D^{+}K^{-} \\ T_{c\overline{s}0}^{++}(2900) \text{ and } T_{c\overline{s}0}^{0}(2900) \text{ in } D_{s}^{\pm}\pi^{+} \end{array} \longrightarrow AA \text{ channel}$$
$$J = 1: T_{cs1}^{0}(2900) \text{ in } D^{+}K^{-} \longrightarrow 84 \oplus 45(SA) \oplus 45(AS) \oplus 20 \oplus \dots$$

Below $D_s^* \rho$ threshold \longrightarrow Described as **meson-meson bound states**

Large N _C 00000	ChPT 000	Lattice QCD 000	2202.02291	Ongoing work	Summary O
$\pi\pi$ scatt	ering at	large <i>N</i> c			

AA channel is attractive — Possible tetraquark

Recently found exotic states at LHCb [LHCb 2020, 2022]:

$$J = 0: \begin{array}{l} T_{cs0}^{0}(2900) \text{ in } D^{+}K^{-} \\ T_{c\bar{s}0}^{++}(2900) \text{ and } T_{c\bar{s}0}^{0}(2900) \text{ in } D_{s}^{\pm}\pi^{+} \end{array} \longrightarrow AA \text{ channel} \\ J = 1: T_{cs1}^{0}(2900) \text{ in } D^{+}K^{-} \longrightarrow 84 \oplus 45(SA) \oplus 45(AS) \oplus 20 \oplus ... \end{array}$$

Below $D_s^* \rho$ threshold \longrightarrow Described as **meson-meson bound states**

Goal: N_c scaling of meson-meson scattering + tetraquark

Large N _C 00000	ChPT 000	Lattice QCD 000	2202.02291 000	Ongoing work	
Lattice of	computa	tions			

 $N_{
m c}=3,4,5,6$ ensembles with $a\sim 0.075$ fm and $M_{\pi}\sim 590$ MeV

Operator set: $\pi\pi + \rho\rho (M_{\rho}/M_{\pi} \approx 1.7 - 2) + \text{local tetraquark}$

> Local tetraquark operators \rightarrow Point sources in a sparse lattice $\tilde{\Lambda}$ [NPLQCD 2019]

$$T(\boldsymbol{P}) \propto \sum_{\boldsymbol{x} \in \tilde{\Lambda}} \mathrm{e}^{-i \boldsymbol{P} \boldsymbol{x}} T(\boldsymbol{x})$$

$$T(x)\sim ar{d}arGamma_1 u\,ar{s}arGamma_2 c -ar{s}arGamma_1 u\,ar{d}arGamma_2 c$$

Quantum numbers of AA channel

Large Ne ChPT Lattice QCD 2202.02291 Ongoing work Summary 0000 000 000 000 000 000 0000 00000 0

We study the **effect of different operators** for $N_c = 3$:

Large Ne ChPT Lattice QCD 2202.02291 Ongoing work Summary 000 000 000 000 000 000 0000 00000 0

We study the **effect of different operators** for $N_c = 3$:

We study the **effect of different operators** for $N_c = 3$:

Ongoing work 0000000

Scattering phase shift: SS channel

Jorge Baeza-Ballesteros

We study the large N_c scaling of scattering observables

Next step: Constrain LECs from large N_c ChPT

1) The large N_c limit of QCD

- 2 Chiral Perturbation Theory
- Scattering in the lattice
- 4 $\pi\pi$ scattering at threshold
- 5 Meson-meson scattering at large N_c

Summary	and outlo	bok			
Large N _C 00000	ChPT 000	Lattice QCD 000	2202.02291 000	Ongoing work 0000000	Summary •

The large N_c limit can provide crucial insights on QCD and lattice QCD allows to study subleading N_c effects

- We are currently studying the large N_c scaling of scattering observables
- We have successfully studied ππ interactions near threshold and matched to large N_c ChPT, finding enhanced subleading N_c effects
- > We are able to characterize subleading N_c corrections at higher energies, and find a **virtual bound state** for $N_c = 3$

Large N _C	ChPT	Lattice QCD	Ongoing work	Summary
				•
Summary	and outlo	pok		

The large N_c limit can provide crucial insights on QCD and lattice QCD allows to study subleading N_c effects

- We are currently studying the large N_c scaling of scattering observables
- We have successfully studied ππ interactions near threshold and matched to large N_c ChPT, finding enhanced subleading N_c effects
- > We are able to characterize subleading N_c corrections at higher energies, and find a **virtual bound state** for $N_c = 3$

Next steps: $\rho\rho$ interactions, constraining LECs

Large N _C	ChPT	Lattice QCD	Ongoing work	Summary
				•
Summary	and outlo	pok		

The large N_c limit can provide crucial insights on QCD and lattice QCD allows to study subleading N_c effects

- We are currently studying the large N_c scaling of scattering observables
- We have successfully studied ππ interactions near threshold and matched to large N_c ChPT, finding enhanced subleading N_c effects
- > We are able to characterize subleading N_c corrections at higher energies, and find a **virtual bound state** for $N_c = 3$

Next steps: $\rho\rho$ interactions, constraining LECs

Thank you for your attention!

 $\pi\pi$ scattering amplitudes for $\mathit{N}_{\rm f}$ flavours are known to NNLO [Weinberg 1979, Gasser, Leutwyler 1985, Bijnens, Lu 2011]

$$\begin{split} M_{\pi} a_{0}^{SS} &= -\frac{M_{\pi}^{2}}{16\pi F_{\pi}^{2}} \left[1 - \frac{16M_{\pi}^{2}}{F_{\pi}^{2}} L_{SS} + \frac{M_{\pi}^{2}}{8F_{\pi}^{2}\pi^{2}N_{f}^{2}} - \frac{M_{\pi}^{2}}{8F_{\pi}^{2}\pi^{2}N_{f}} \right] \\ &+ \frac{M_{\pi}^{2}}{8F_{\pi}^{2}\pi^{2}N_{f}^{2}} \log \frac{M_{\pi}^{2}}{\mu^{2}} - \frac{M_{\pi}^{2}}{8F_{\pi}^{2}\pi^{2}N_{f}} \log \frac{M_{\pi}^{2}}{\mu^{2}} + \frac{M_{\pi}^{2}}{8F_{\pi}^{2}\pi^{2}} \log \frac{M_{\pi}^{2}}{\mu^{2}} \right] \\ M_{\pi} a_{0}^{AA} &= \frac{M_{\pi}^{2}}{16\pi F_{\pi}^{2}} \left[1 - \frac{16M_{\pi}^{2}}{F_{\pi}^{2}} L_{AA} - \frac{M_{\pi}^{2}}{8F_{\pi}^{2}\pi^{2}N_{f}^{2}} - \frac{M_{\pi}^{2}}{8F_{\pi}^{2}\pi^{2}N_{f}} + \frac{L_{R} = L^{(0)}N_{c} + L_{R}^{(1)} + \dots - \frac{M_{\pi}^{2}}{8F_{\pi}^{2}\pi^{2}N_{f}^{2}} \log \frac{M_{\pi}^{2}}{\mu^{2}} - \frac{M_{\pi}^{2}}{8F_{\pi}^{2}\pi^{2}N_{f}} \log \frac{M_{\pi}^{2}}{\mu^{2}} - \frac{M_{\pi}^{2}}{8F_{\pi}^{2}\pi^{2}N_{f}^{2}} \log \frac{M_{\pi}^{2}}{\mu^{2}} \right] \end{split}$$

Explicit $N_{\rm f}$ scaling is not the expected at large $N_{\rm c}$

$$\text{Large } N_{c} \text{:} \ a_{0}^{R} \propto \mp \frac{1}{N_{c}} \left(\tilde{a} + \tilde{b} \frac{N_{f}}{N_{c}} \mp \tilde{c} \frac{1}{N_{c}} \right) + \mathcal{O}(N_{c}^{-3}) \\ \tilde{a}, \tilde{b}, \tilde{c} \sim \mathcal{O}(1) \text{ constants}$$

Two-particle energy spectrum

Average plateaux using Akaike Information Criterion [Jay, Neil 2020]

$$w_i \propto \exp\left[-rac{1}{2}\left(\chi^2 - 2N + 2N_{\sf par}
ight)
ight]$$

Reduces human bias

Allows to automatically find plateaux for accurate data

AA-channel: Continuum extrapolation for $N_c = 3$

Continuum extrapolation of $k \cot \delta_0$ for $N_c = 3$ in 3 steps:

- 1. Extrapolation to $k/M_{\pi} = -0.08$ using Effective Range Expansion and $M_{\pi}^2 r_0 a_0 \in [-5, -1]$
- **2.** Interpolation to $\xi = 0.14$
- 3. Constrained continuum extrapolation

- * Large $\mathcal{O}(a^2)$ effects for both regularizations
- * Use TM fermions
- * Wilson-ChPT inspired parametrization

$$\Delta \mathcal{M}_{AA} = 32\pi^2 a^2 W \xi$$

 $[W \sim \mathcal{O}(N_c^0)]$

$$\star W = 42(29) \text{ fm}^{-2}$$

Virtual bound state for $N_c = 3$

We find a **virtual bound state** for $N_c = 3$

