

Stuart Fegan University of York July 4th, 2024

CEBAF

- Continuous Electron Beam Accelerator Facility
- Superconducting RF accelerator
- Anti-parallel double linac, 7/8 of a mile in circumference
- Electron beam energies up to 12 GeV
- Diverse experimental program in four halls
- High-current Electron beams in Halls A and C
- Large acceptance detectors in Halls B and D
- Secondary beams available (real photons) and proposed (K_{Iong})

Hall D

- 12 GeV electron beam produces real photon beams up to 9 GeV via Bremsstrahlung
- Charged and neutral particle detection in a hermetic solenoid-based detector
- Uniform acceptance
- GlueX is a meson spectrosopy experiment, but hall and equipment used for other experiments

K_{Long} Facility in Hall D

Planning and Schedule

Hall D plans

Assumed beam availability

E12-10-011 PrimeX-n Run F12-19-003 SRC/CT Run Installation of CPP E12-13-008 CPP/NPP Run

Installation of ECAL 2

E12-12-002A GlueX-II+JEF Run

Installation of KLF

E12-19-001 KLF Run Restoration of photon beam

Installation of REGGE

E12-20-011 REGGE Run

- Intense kaon beam on target
- Proton and neutron targets (100 days approved)
- Low background
- Exclusive final states

Compact Photon Source

■ Tertiary K_{Long} beam, first produce photons from CEBAF electrons

S. Fegan Exotic Hadron Spectroscopy July 4th, 2024 5/24

K_{Long} Production

■ Photons from CPS impinge on a Be target, producing K_{Long} beam

6/24 S. Fegan Exotic Hadron Spectroscopy July 4th, 2024

Time Structure of K_L Beam

- CEBAF beam typically has a 2 ns beam bucket structure
- However, high beam current required for K_{Long} production (5-10 nA)
- Use higher harmonics of CEBAF, with more current per bunch
- One effect of this is to separate neutron background in K_L beam

Measuring K_{Long} Flux

- Flux of diverging K_{Long} beam can be measured by careful choice of flux monitor location
- Flux at target can be inferred from measuring K_{Long} decays (if no information lost in beampipe)

Decay	BR (%)
$K_L ightarrow \pi^\pm e^\mp u_e$	40.55
$K_L o \pi^{\pm} \mu^{\mp} u_{\mu}$	27.04
$K_L ightarrow \pi^+ \pi^- \pi^0$	12.54
$\mathcal{K}_{\mathcal{L}} ightarrow \pi^0 \pi^0 \pi^0$	19.52

- Roughtly 21% of Kaons decay in flight
- Any decay with charged particles can be used

K_{Long} Flux Monitor

- Flux Monitor development led by York
- Straw tube trackers and TOF components under evaluation
- Concept allows for solenoid magnet to enhance capabilities

11/24

Hyperons

	Predicted (Lattice)	"Observed" (PDG)
N *	62	21
Δ^*	38	12
Λ*	71	14
Σ^*	66	9
Ξ*	73	6
Ω^*	36	2

R.G. Edwards et al. Phys Rev D87 (2013) 054506

S. Fegan Exotic Hadron Spectroscopy July 4th, 2024

Hyperons

Kaon beam brings one unit of strangeness

JLab. Hall D and KLF

No associated kaons for Λ^*, Σ^* production

1 associated kaon for Ξ^*

2 associated kaons for Ω^*

S. Fegan Exotic Hadron Spectroscopy July 4th, 2024 12/24

Strange Beams

Sigma Factory

$$K_L p \rightarrow \Sigma^* \rightarrow K_S p$$
 $K_L p \rightarrow \Sigma^* \rightarrow \pi^+ \Lambda$
 $K_L p \rightarrow \Sigma^* \rightarrow K^+ \equiv^0$
 $K_L p \rightarrow \Sigma^* \rightarrow \pi^0 \Sigma^+$
 $K_L p \rightarrow \Sigma^* \rightarrow \eta \Sigma^+$
 $K_L p \rightarrow \Sigma^* \rightarrow \omega \Sigma^+$
 $K_L p \rightarrow \Sigma^* \rightarrow \eta' \Sigma^+$
 $K_L p \rightarrow \Sigma^* \rightarrow \eta' \Sigma^+$

- 2 body final state
- Pure Σ^* channels
- Self-polarising observables

 $K_L p \rightarrow K^+ n$ Non-resonant background

Expected Results

$$\mathcal{K}_{L} p
ightarrow \mathcal{K}^{+} \Xi^{0}$$

July 4th, 2024 15/24 Exotic Hadron Spectroscopy

Expected Results

Green = 20 days running Yellow = 100 days running

Omega States

Expected Yields and Cross Sections for Ω^* states

S. Fegan Exotic Hadron Spectroscopy July 4th, 2024

Sectors

Strangeness can bridge the light and heavy quark sectors

- Many thresholds
- Cusps
- Molecules
- Dynamic Resonances

Light Sector Pros

- High Statistics
- Easy to produce

Cons

- Too broad
- Too many interferences

Strange Sector Pros

- High Statistics
- Easy to produce with K_{L}
- Width just right
- Good spacing

Heavy Sector Cons

- Low Statistics
- Hard to produce
- Too narrow

Sectors

 $\Lambda(1405)$ - $\pi\Sigma/\bar{K}N$ molecule

 $P(4450) - D^* \overline{\Sigma}_C$ molecule

S. Fegan 19/24 Exotic Hadron Spectroscopy July 4th, 2024

Hyperon-nucleon Scattering

Cross Sections

■ Λp

■ Σ⁻p

■ Σ⁺p

■ Λd

Phys. Rev. Lett 127 272303 (2021)

Polarisation Observables

■ An

 $\quad \blacksquare \quad \Sigma^- p$

■ Ad

■ Λp

Neutron Beams

Recall the K_{Long} beam has neutron background

■ Could use low energy neutrons for studies of nuclear structure

Hypernuclei

K_{Long} beam can be used to produce hypernuclei

- Nuclear emulsion technology enables high-resolution tracking
- Used at J-PARC with K^- beam
- Hypertriton binding energy measurement
- Similar setup being proposed for inclusion in KLF program

Conclusions and Outlook

- lacktriangle Development of a K_{Long} beam facility is well underway at Jefferson Lab
- This will enable JLab to greatly expand its physics program, leveraging strangeness to new extremes
- University of York has a leading role;
 - Design of the Kaon Flux Monitor
 - Simulation studies of several reactions
 - New ideas to expand the scope of the project

Future Developments

- JLab are actively investigating a 22 GeV upgrade to CEBAF, running KLF at these energies could push into Ω production studies
- Upgrades to flux monitor capabilities (solenoid magnet, bespoke trackers, optimisations of existing design) would improve expected uncertainties, and provide additional physics capabilities, e.g. search for rare kaon decays
- Leveraging existing strangeness datasets, e.g. the very strange experiment at CLAS12 (A. Acar, this morning), will help direct future analyses