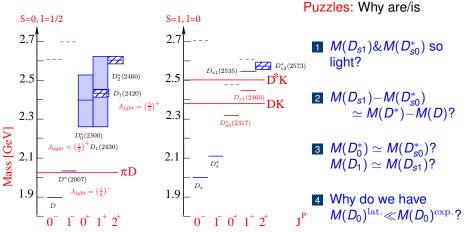
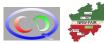

HADRONIC MOLECULES IN THE SINGLE AND DOUBLE CHARM SECTOR

June 28, 2024 | Christoph Hanhart | IKP/IAS Forschungszentrum Jülich



SETTING THE STAGE I: XYZ ET AL.



SETTING THE STAGE II: D-MESONS

Quark Modell: M. Di Pierro and E. Eichten, PRD 64 (2001) 114004

All those puzzles disappear, if the states are hadronic molecules

HADRONIC MOLECULES

review article: Guo et al., Rev. Mod. Phys. 90(2018)015004

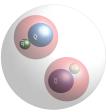
- are few-hadron states, bound by the strong force
- do exist: light nuclei.
 - e.g. deuteron as pn & hypertriton as Ad bound state
- are located typically close to relevant continuum threshold;

e.g., for
$$E_B = m_1 + m_2 - M$$
 ($\gamma = \sqrt{2\mu E_B}; \mu = m_1 m_2 / (m_1 + m_2)$)

- E_B^{deuteron} = 2.22 MeV (γ = 40 MeV)
- $E_B^{\text{hypertriton}} = (0.13 \pm 0.05) \text{ MeV}$ (to Ad) ($\gamma = 26 \text{ MeV}$)
- can be identified in observables (Weinberg compositeness):

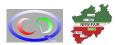
$$\frac{g_{\text{eff}}^2}{4\pi} = \frac{4M^2\gamma}{\mu}(1-\lambda^2) \rightarrow a = -2\left(\frac{1-\lambda^2}{2-\lambda^2}\right)\frac{1}{\gamma}; \quad r = -\left(\frac{\lambda^2}{1-\lambda^2}\right)\frac{1}{\gamma}$$

 $(1 - \lambda^2)$ =probability for molecular component in wave function


Corrections are $\mathcal{O}(\gamma R)$

Range corrections: Song, Dai, Oset (2022); Li, Guo, Pang, Wu (2022); Kinugawa, Hyodo (2022)

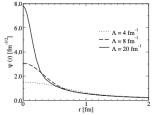
Are there mesonic molecules?

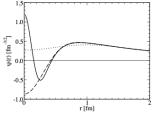

DISCLAIMERS AND OUTLINE

The method presented is 'diagnostic' - especially,

- it does not allow for conclusions on the binding force;
- it allows one only to study individual states;
- quantitative interpretation gets lost when states get bound too deeply ('uncertainty' $\sim R\gamma$)

In the rest of the talk I will present


- observables that are NOT sensitive to the molecular component
- an exploratory study of the vector states around 4.3 GeV
- how unitarized chiral theory (UChPT) for GB-D-meson scattering solves all the mentioned puzzles of the pos. parity open flavor states



ON HADRONIC WAVE FUNCTIONS



A.Nogga, C.H. PLB634 (2006) 210

Test study: Deuteron wave function

Wave function from LS-equation:

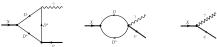
$$T = V + \int^{\Lambda} d^3 q \ VGT$$

regularised by cut-off Λ

For each $\Lambda \rightarrow adjust C(\Lambda)$ to get E_B

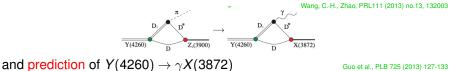
Result:

- wf below 0.8 fm not determined
- wf with OPE bounded at origin

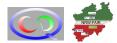

 \implies saves power counting

INSENSITIVE OBSERVABLES

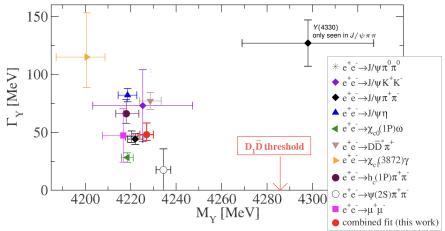
 \implies Observables sensitive to short-range part of wf are not sensitive to molecular component \rightarrow leading order counter term


Example: $X(3872) \rightarrow \gamma \psi(nS)$

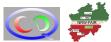
Example: X production in large p_T reactions

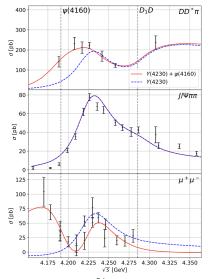

both cannot measure the molecular component

But natural explanation for $Y(4260) \rightarrow \pi Z_c(3900)$ and


.... more examples below

Slide 6118


EXAMPLE 1: Y(4230) **AS** $D_1\overline{D}$ **MOLECULE**


- Inclusion of $D_1 \overline{D}$ intermediate states (g_{YD_1D} large for molecule)
- Inclusion of charmonium $\psi(4160)$ ($M_{\psi(4160)} = 4191$ MeV)

L. von Detten, V. Baru, CH, Q. Wang, D. Winney, Q. Zhao; PRD109(2024)116002

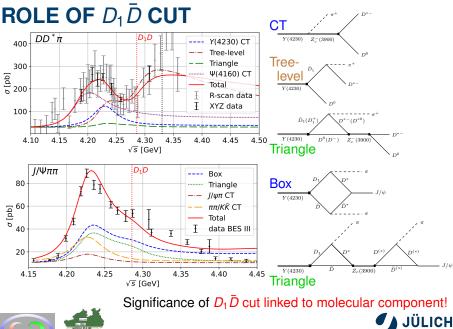
IMPACT OF ψ (4160)

Well established cc state

Parameters from RPP2023: 2023 update of R. L. Workman *et al.* [PDG], PTEP2022 (2022)083C01

 $\begin{array}{l} m_{\Psi(4160)} = (4191{\pm}5) \,\, \text{MeV} \\ \Gamma_{\Psi(4160)} \,\, = (70{\pm}10) \,\, \text{MeV} \end{array}$

Experimental extractions:


 $\begin{array}{c} D^0 D^{*-} \pi^+ \colon \Gamma_Y \!=\! (77 \!\pm\! 6.3 \!\pm\! 6.8) \, \text{MeV}_{\text{BESIII, PRL130(2023) 121901}} \\ J/\psi \pi^+ \pi^- \colon \Gamma_Y \!=\! (41.8 \!\pm\! 2.9 \!\pm\! 2.7) \, \text{MeV}_{\text{BESIII, PRD106(2022)072001}} \end{array}$

in both cases ψ (4160) omitted

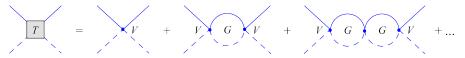
 $\mu^+\mu^-$: $\Gamma_Y = (47.2 \pm 22.8 \pm 10.5) \text{ MeV}_{\text{BESIII, PRD102(2020)112009}}$

with ψ (4160) included

Slide 9118

EXAMPLE II: POS. PARITY D MESONS

Starting point: chiral perturbation theory to NLO for *GB-D*-meson scattering However, only perturbatively consistent with unitarity \implies Unitarisation


Truong, Dorado, Pelaez, Kaiser, Weise, Oller, Oset, Lutz, Kolomeitsev, Guo, Meißner, C.H., ...

Observe $\operatorname{Im}(t(s)) = \sigma(s) |t(s)|^2$ implies $\operatorname{Im}(t(s)^{-1}) = -\sigma(s)$

 \implies write subtracted dispersion integral for $t(s)^{-1}$

 \implies fix $\operatorname{Re}(t(s)^{-1})$ by matching to ChPT

Effectively this gives

with ChPT expression for V ... and additional parameter $a(\mu)$ (from the loop)

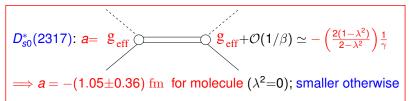
Dependence on unitarization method needs to be clarified!

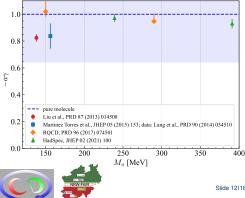
FIT TO LATTICE DATA

fit 4+1 para. to lattice data for $a_{D,\phi}^{(S,l)}$ in selected channels

0.00 -0.051.0 -0.05 $r_{D\overline{K}}^{(-1,0)}$ [fm] ${n_{D,K}^{(2,1/2)}}$ [fm] $p_{D\overline{K}}^{(-1,1)}$ [fm] 0.8 -0.10-0.100.6 -0.15-0.130.4 -0.20-0.20-0.250.2 -0.25-0.300.0 -0.30100 200 300 400 500 600 100 200 300 400 500 600 100 200 300 400 500 600 0 0 0 M. [MeV] M_{π} [MeV] M_{π} [MeV] 0.00 0.04 -0.05 $t_{D\pi}^{(0,3/2)}$ [fm] $a_{D_{j,\pi}}^{(1,1)}$ [fm] 0.02 controlled quark -0.100.00 -0.15mass dependence -0.20-0.02Fit range up to -0.25-0.04-0.300 100 200 300 400 500 600 $M_{\pi} = 500 \text{ MeV}$ 100 200 300 400 500 600 0 M_{π} [MeV] M. [MeV]

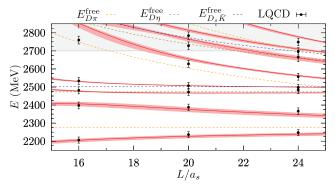
• $\pi/K/\eta - D^{(*)}/D_s^{(*)}$ scattering fixed (chiral sym: πD int. weaker than KD)


• $D_{s0}^*(2317)$ emerges as a pole with $M_{D_{s0}^*} = 2315^{+18}_{-28}$ MeV $(E_b = 47^{+28}_{-18})$; since $E_b(D_{s0}) = E_b(D_{s1}^*) + O(1/M_D) \Longrightarrow$ puzzel 2 solved



Liu et al. PRD87(2013)014508

INTERPRETATION A LA WEINBERG


Various lattice studies show under binding study $a\gamma$ (removes E_b dep.) All analyses consistent with purely molecular $D_{c0}^{*}(2317)$ (analogous for $D_{s1}(2460)$)

 \implies puzzel 1 solved

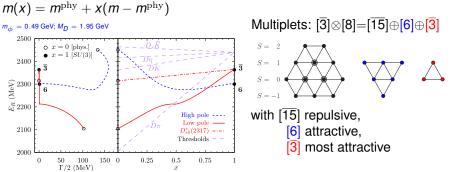
THE S = 0 SECTOR

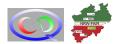
Keeping parameters fixed one gets:

Poles for

Albaladejo et al., PLB767(2017)465; Lattice: Moir et al. [Had.Spec.Coll.] JHEP10(2016)011 Fits directly to these data: Z. H. Guo et al., EPJC 79(2019)13; M. F. M. Lutz et al., PRD106(2022)114038

- *M*_π ≃391 MeV: (2264, 0) MeV [000] & (2468, 113) MeV [110]
- *M*_π=139 MeV: (2105, 102) MeV [100] & (2451, 134) MeV [110]

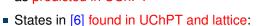

Questions $c\bar{q}$ nature of lowest lying 0⁺ D state, $D_0^*(2300)$

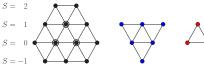

SU(3) STRUCTURE FROM UCHPT

Albaladejo et al., PLB767(2017)465

- 3 poles give observable effect with SU(3)-breaking on
- At SU(3) symmetric point $m_{\phi} \simeq 490$ MeV: 3 bound and 6 virtual states
- The light $D\pi$ state is the multiplet member of $D_{s0}^*(2317)$

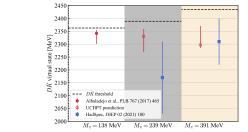
 $\Rightarrow M_{D_{s0}^*(2317)} - M_{D_0^*(2100)} = 217 \text{ MeV}$ puzzle 3 solved





SU(3) STRUCTURE

■ S = -1

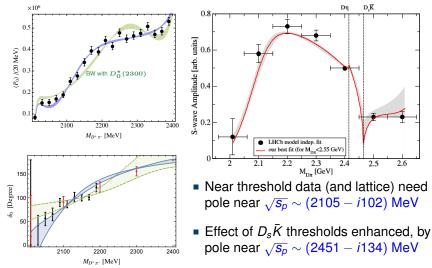

 Lattice shows repulsion in [15] as predicted in UChPT

Albaladejo et al., PLB767(2017)465

Hofmann and Lutz, NPA733(2004)142

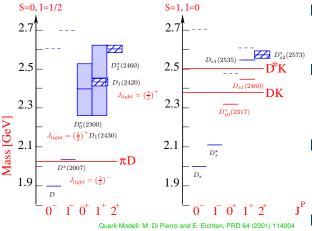
• S = 0: Lattice finds virtual pole in [6] $@M_{\pi} \approx 600 \text{ MeV}$

in line with UChPT prediction Gregory et al., [arXiv:2106.15391 [hep-ph]]+Lüscher analysis.

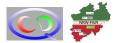

Confirmed by J.D.E. Yeo, C.E. Thomas and D.J. Wilson, [arXiv:2403.10498 [hep-lat]].

• Quark Model: $\overline{[3]} \otimes [1] = \overline{[3]}$ — the [6] is absent

 $D\pi$ S-WAVE FROM $B^-
ightarrow D^+ \pi^- \pi^-$



 \implies two-pole structure solves puzzle 4

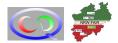


CHARMED STATES

Puzzles solved:

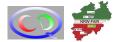
- 1 $M(D_{s1})\&M(D_{s0}^*)$ are *DK* and *D***K* bound states
- 2 $M(D_{s1})-M(D_{s0}^*)$ $\simeq M(D^*)-M(D),$ since spin symmetry gives equal binding
- 3 States with *s*-quark heavier, e.g. $M(D_0^*) = 2100 \text{ MeV}$ $M(D_{s0}^*) = 2317 \text{ MeV}$
- 4 Two pole structure, not $D_0(2300)$
- ... role of left-hand cuts needs to be clarified

Lutz et al., PRD106(2022)114038; Korpa et al., PRD107(2023)L031505


SUMMARY AND CONCLUSION

- For near threshold states Weinberg criterion provides proper diagnostics
- View extended by studying the SU(3)_f multiplet structure
 - what kinds of multiplets are there?
 - pattern of spin and flavor symmetry breaking important
- Interplay of different poles leads to
 - non-trivial line shapes
 - non-trivial phase motions

We are on a good path to identify the hadronic molecules in the spectrum


... and to exploit their imprint on various observables

Thanks a lot for your attention

COMPACT TETRAQUARKS

The heavy-light diquarks, cq of spin 0 and spin 1, in the flavor [3] line up with diquarks of light anti-quarks $\bar{q}\bar{q}$: $[\bar{3}] \otimes [\bar{3}] = 0$ [3] \oplus [6] anti-svm. Imposing Fermi symmetry: anti-sym. in color \implies **spin 0** (anti-sym.) \rightarrow flavor anti-sym. \rightarrow flavor [3] Combining with the cq diquark: $[3] \otimes [3] = [\overline{3}] \oplus [6]$ L. Maiani, A. D. Polosa and V. Riguer, [arXiv:2405.08545 [hep-ph]] and talk by L. Maiani But there should also be **spin 1** (sym.) \rightarrow flavor sym. \rightarrow flavor [6] Combining with the cq diquark: $[3] \otimes [6] = [3] \oplus [\overline{15}]$ Mass estimates: $M_{cq}[S=1] - M_{cq}[S=0] pprox M_{D_{c1}^*(2460)} - M_{D_{s0}(2317)} pprox$ 140 MeV $M_{aa}[S=1] - M_{aa}[S=0] \approx M_{\Sigma_a} - M_{\Lambda_a}$ pprox 170 MeV pprox 300 MeV There should be a [15]-state about 300 MeV above 2.1 GeV

Why was it not seen on the lattice?

CHIRAL LAGRANGIAN (1)

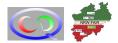
The leading order Lagrangian (no free parameters)

 $\mathcal{L}_{\phi P}^{(1)} = D_{\mu} P D^{\mu} P^{\dagger} - m^2 P P^{\dagger}$

with $P = (D^0, D^+, D_s^+)$ for the D mesons, and the covariant derivative

$$D_{\mu}P = \partial_{\mu}P + P\Gamma_{\mu}^{\dagger}, \quad D_{\mu}P^{\dagger} = (\partial_{\mu} + \Gamma_{\mu})P^{\dagger},$$

$$\Gamma_{\mu} = \frac{1}{2} \left(u^{\dagger}\partial_{\mu}u + u\partial_{\mu}u^{\dagger} \right),$$


where $u_{\mu} = i \left[u^{\dagger} (\partial_{\mu} - ir_{\mu}) u + u (\partial_{\mu} - iI_{\mu}) u^{\dagger} \right], \quad u = e^{i\lambda_a \phi_a/(2F_0)}$

Burdman, Donoghue (1992); Wise (1992); Yan et al. (1992)

• this gives the Weinberg–Tomozawa term for *P* ϕ scattering:

$$\propto E_{\phi} + \mathcal{O}(1/M_D)$$
 (S – wave)

Interaction of kaons significantly stronger than that of pions

CHIRAL LAGRANGIAN (2)

• At the next-to-leading order p^2 (6 free parameters)

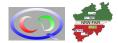
F-K Guo, CH, S. Krewald, U.-G. Meißner, PLB666(2008)251

$$\mathcal{L}_{\phi P}^{(2)} = \mathcal{P}\left[-h_0 \langle \chi_+ \rangle - h_1 \chi_+ + h_2 \langle u_\mu u^\mu \rangle - h_3 u_\mu u^\mu\right] \mathcal{P}^{\dagger} \\ + \mathcal{D}_\mu \mathcal{P}\left[h_4 \langle u_\mu u^\nu \rangle - h_5 \{u^\mu, u^\nu\}\right] \mathcal{D}_\nu \mathcal{P}^{\dagger},$$

$$\chi_{\pm} = u^{\dagger} \chi u^{\dagger} \pm u \chi^{\dagger} u, \quad \chi = 2B_0 \operatorname{diag}(m_u, m_d, m_s)$$

Low-energy constants:

 $h_1 = 0.42$: from $M_{D_s} - M_D$


Same effective operator leads to strong isospin violation

 $m_{D^+} - m_{D^0} = \Delta m^{
m strong} + \Delta m^{
m e.m.} = ((2.5 \pm 0.2) + (2.3 \pm 0.6)) \text{ MeV}$

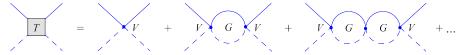
h₀: from quark mass dependence of charmed meson masses (lattice)

h_{2,3,4,5}: fixed from lattice results on scattering lengths

calls for unitarisation \Longrightarrow UChPT

UNITARISATION

Truong, Dorado, Pelaez, Kaiser, Weise, Oller, Oset, Lutz, Kolomeitsev, Guo, Meißner, C.H., ...

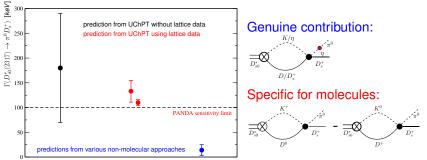

ChPT is only perturbatively consistent with unitarity.

Observe $\operatorname{Im}(t(s)) = \sigma(s) |t(s)|^2$ implies $\operatorname{Im}(t(s)^{-1}) = -\sigma(s)$

 \implies write subtracted dispersion integral for $t(s)^{-1}$

 \implies fix Re($t(s)^{-1}$) by matching to ChPT

Effectively this gives

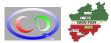

with ChPT expression for V ... and additional parameter $a(\mu)$ (from the loop)

Dependence on unitarization method needs to be clarified!

EXP. TEST: HADRONIC WIDTH

F.K. Guo et al., PLB666(2008)251; L. Liu et al. PRD87(2013)014508; X.Y. Guo et al., PRD98(2018)014510 and, e.g., P. Colangelo and F. De Fazio, PLB570(2003)180

Experiment needs very high resolution \rightarrow PANDA

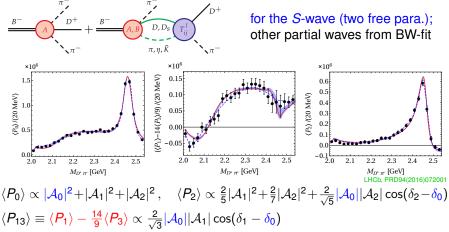

Predict $M_{B_{ac}^*} = 5722 \pm 14$ MeV and various decays

Fu et al., EPJA58(2022)70

Most recent lattice result: $M_{B_{s0}^*} = 5699 \pm 14 \text{ MeV}$

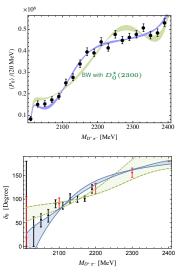
Hudspith & Mohler, [arXiv:2303.17295 [hep-lat]].

Next: Study multiplet structure from GB-D-meson scattering



OBSERVABLE: $B^- \rightarrow D^+ \pi^- \pi^-$

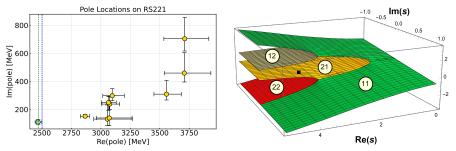
With ϕD amplitude fixed we can calculate production reactions:


Du et al., PRD98(2018)094018; for more results see Du et al., PRD99(2019)114002

LIGHTEST CHARMED SCALAR

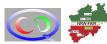
- BW with *m* = 2300 MeV incompatible with data
- UChPT with

 (2105 ± 8 i(102 ± 11)) MeV
 is compatible
 Du et al., PRL126(2021)192001
- Low mass confirmed by Lattice QCD (2196 \pm 64 - *i*(210 \pm 110)) MeV at $M_{\pi} = 239$ MeV HadSpec, JHEP07(2021)123


Analogous picture for $J^P = 1^+$

POLE STRUCTURE FROM LATTICE STUDY

Lattice study reported only bound state pole Moir et al. [Had.Spec.Coll.] JHEP10(2016)011 Second pole was present, but location depends on amplitude model


Poles located on hidden on sheet

A. Asokan et al., EPJC83(2023)850

V. Baru et al., EPJA23(2005)523

- Pole locations correlated; in line with pole from UChPT
- Distance to threshold balanced by size of residue

Explains correlation between Re(pole) and Im(pole)

