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SETTING THE STAGE I: XYZ ET AL.
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Figure 22: Summary of ordinary charmonia, XYZ and pentaquarks listed by the PDG [1].

Such a state was actually claimed to be narrower in other analyses [277, 278] with Γp = 120 MeV, but
no consensus was reached [279, 281, 282]. A recent CLAS analysis finds actually two N(1720) with similar
mass and widths, but different Q2 behavior in electroproduction [283]. The ANL-Osaka analysis finds two
poles with masses 1703 and 1763 MeV and widths 70 and 159 MeV, respectively [284]. Since quark models
predict several 3/2+ states in this energy region [18, 261, 262, 264], it is possible that the data analyses
are not able to resolve each pole individually. Further research is necessary to establish the number and
properties of resonances in this energy region, before discussing their nature.

2.5. Heavy quark spectroscopy

The unexpected discovery of the X(3872) in 2003 ushered in a new era in hadron spectroscopy [285].
Experiments have claimed a long list of states, collectively called XYZ, that appear mostly in the char-
monium sector, but do not respect the expectations for ordinary QQ̄ states, summarized in Figure 22. An
exotic composition is thus likely required [3, 9]. Several of these states appear as relatively narrow peaks
in proximity of open charm threshold, suggesting that hadron-hadron dynamics can play a role in their
formation [4, 286]. Alternatively, quark-level models also predict the existence of supernumerary states, by
increasing the number of quark/gluon constituents [2]. The recent discovery of a doubly-heavy T+

cc [287, 288]
and of a fully-heavy X(6900) [289] states make the whole picture extremely rich. Having a comprehensive
description of these states will improve our understanding of the nonperturbative features of QCD. Most
of the analyses from Belle and BaBar suffered from limited statistics, and strong claims were sometimes
made with simplistic models on a handful of events. Currently running experiments like LHCb and BESIII
have overcome this issue, providing extremely precise datasets that also require more sophisticated analysis
methods and theory inputs. The status of ordinary and exotic charmonia is summarized in Figure 22. De-

30

JPAC, PPNP127(2022)103981

cc̄ cc̄qq̄ cc̄qs̄ ccq̄q̄ ccc̄c̄ cc̄qqq

Quark model works up to
first S-wave thresholds
Beyond those: “Exotics”
Many near thresholds
=⇒ Hadronic Molecules?
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SETTING THE STAGE II: D-MESONSExample: Strange-Charm states
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Quark Modell: M. Di Pierro and E. Eichten, PRD 64 (2001) 114004

Note: decay modes of D∗
s0(2317) and Ds1(2460) either D(∗)

s π or D(∗)
s γ → narrow

Lecture series onExotic MesonsPart I: Effective Field theories and their application to Ds(2317) – p. 10/20

S=0, I=1/2 S=1, I=0

Quark Modell: M. Di Pierro and E. Eichten, PRD 64 (2001) 114004

Puzzles: Why are/is

1 M(Ds1)&M(D∗
s0) so

light?

2 M(Ds1)−M(D∗
s0)

≃ M(D∗)−M(D)?

3 M(D∗
0) ≃ M(D∗

s0)?
M(D1) ≃ M(Ds1)?

4 Why do we have
M(D0)

lat.≪M(D0)
exp.?

All those puzzles disappear, if the states are hadronic molecules
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HADRONIC MOLECULES
review article: Guo et al., Rev. Mod. Phys. 90(2018)015004

are few-hadron states, bound by the strong force

do exist: light nuclei.
e.g. deuteron as pn & hypertriton as Λd bound state
are located typically close to relevant continuum threshold;
e.g., for EB = m1 + m2 − M (γ =

√
2µEB; µ = m1m2/(m1 + m2))

Edeuteron
B = 2.22 MeV (γ = 40 MeV)

Ehypertriton
B = (0.13 ± 0.05) MeV (to Λd) (γ = 26 MeV)

can be identified in observables (Weinberg compositeness):

g2
eff

4π
=

4M2γ

µ
(1 − λ2) → a = −2

(
1 − λ2

2 − λ2

)
1
γ
; r = −

(
λ2

1 − λ2

)
1
γ

(1 − λ2)=probability for molecular component in wave function

Corrections are O(γR) Range corrections: Song, Dai, Oset (2022); Li, Guo, Pang, Wu (2022); Kinugawa, Hyodo (2022)

Are there mesonic molecules?

THE NAME OF THE GAME:

Q
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Picture by Soeren Lange

How can one disentangle the different structures?
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DISCLAIMERS AND OUTLINE
The method presented is ’diagnostic’ — especially,

it does not allow for conclusions on the binding force;

it allows one only to study individual states;

quantitative interpretation gets lost when states get bound too deeply
(’uncertainty’ ∼ Rγ)

In the rest of the talk I will present

observables that are NOT sensitive to the molecular component

an exploratory study of the vector states around 4.3 GeV

how unitarized chiral theory (UChPT) for GB-D-meson scattering
solves all the mentioned puzzles of the pos. parity open flavor states
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ON HADRONIC WAVE FUNCTIONS

A.Nogga, C.H. PLB634 (2006) 210

wf from contact interactions only:

wf including one-pion exchange:

Test study: Deuteron wave function

Potential: V=
C(Λ)

Wave function from LS-equation:

T = V +

∫ Λ

d3q VGT

regularised by cut-off Λ

For each Λ → adjust C(Λ) to get EB

Result:
wf below 0.8 fm not determined
wf with OPE bounded at origin

=⇒ saves power counting
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INSENSITIVE OBSERVABLES
=⇒ Observables sensitive to short-range part of wf

are not sensitive to molecular component → leading order counter term

Example: X (3872) → γψ(nS)

F.-K. Guo et al. / Physics Letters B 742 (2015) 394–398 395

Table 1
Some paradigmatic examples of quark-model estimates for the radiative decays of
the 23 P1 charmonium.

�(X → γ J/ψ) [keV] �(X → γ ψ ′) [keV] R

Ref. [23] 11 64 5.8
Ref. [10] 70 180 2.6
Ref. [24] 50–70 50–60 0.8 ± 0.2

both a molecular as well as a compact component of the X(3872)

that an enhanced decay of the X(3872) into γψ ′ compared to 
γ J/ψ is fully compatible with a predominantly molecular nature
of X(3872). An admixture of 5–12% of a cc̄ component was suffi-
cient to explain the data. In this paper we critically re-investigate 
the validity of the claim of Ref. [16] from an effective field theory 
point of view. In particular, we demonstrate that, contrary to ear-
lier claims, radiative decays do not allow one to draw conclusions 
on the nature of X(3872) and therefore confirm qualitatively the 
findings of Ref. [20] that the observed ratio is not in conflict with 
a predominantly molecular nature of the X(3872).

2. Generalities

According to Ref. [25] one may define the molecular compo-
nent of a bound state by the probability to find the continuum 
component in the wave function of the physical state. This defi-
nition provides a close link between the significance of hadronic
loops and hadronic molecules. In studies of quarkonia, the im-
portance of hadronic loops is case dependent. In some transitions
as discussed in, for example, Refs. [26–28], they are expected to 
give sizeable contributions. In contradistinction hadronic molecules 
have large effective coupling constants to the continuum as fol-
lows straightforwardly from the analysis of Ref. [25], and a pure
molecule only couples to its constituents. As a consequence, in 
their decays hadronic loops are by definition a leading order ef-
fect. Because of this, hadronic molecules leave unique imprints in 
some properly chosen observables, but not in all: as we discuss 
in this paper in detail, in order to quantitatively control (ratios of) 
transition rates, additional information, not at all linked to the na-
ture of the state under investigation, on the matrix element that 
connects the continuum state to the final state might be neces-
sary. In addition, not all observables are related to the long-range 
tail of the wave function of a molecular state. In particular, we 
demonstrate that the radiative decays are much more sensitive to 
the short-range parts of the X(3872) wave function rather than to 
the long-distance nature of the X(3872).

The situation is analogous to that of the D∗
s0(2317): when being

treated as a cs̄ state meson loops appear in the effective field the-
ory only at subleading orders and give a small contribution to the 
decays [29]. On the other hand, if the assumed structure is a D K
molecule, meson loops are a leading order effect [30]. However, 
this does not imply that all observables allow one to distinguish
between the two scenarios: in Ref. [30] it was argued that while 
the strong decays are sensitive to the nature of the state the ra-
diative decays are not because there are short-range contributions 
present already at the leading order.

The decay mechanisms for X(3872) into the γψ , with ψ de-
noting J/ψ or ψ ′ , are shown in Fig. 1. The charge conjugated 
diagrams are not depicted but are taken into account in the decay
amplitude. We use the diagrams shown in Fig. 1 to calculate the 
X(3872) radiative decay widths employing a covariant approach. 
The details are presented in the next section. Heavy quark spin 
symmetry (HQSS) is used wherever appropriate to relate the vec-
tor and pseudoscalar charmed mesons. Our phase convention for 
the charge conjugation of the charmed mesons is

CD(∗)C−1 = D̄(∗). (3)

Under this convention, the wave function of the X(3872) as a pure
hadronic molecule may be written as

|X(3872)〉 = 1√
2

(∣∣D D̄∗〉 + ∣∣D̄ D∗〉) . (4)

3. Formalism

The loop amplitude for the decay Xσ (p) → γλ(q)ψμ(p′) (p′ =
p − q) is given by the sum of the diagrams (a)–(e) depicted in
Fig. 1.

The Xσ (p) → D D̄∗
ν(k) interaction Lagrangian reads

LX = x0√
2

X†
σ

(
D∗0 σ D̄0 + D0 D̄∗0 σ

)

+ xc√
2

X†
σ

(
D∗+ σ D− + D+D∗− σ

) + h.c., (5)

where the values of the coupling constants of the X(3872) to the 
charged and neutral charmed mesons are similar, see, for example, 
Refs. [31,32], so in what follows we do not distinguish between 
them and set xc = x0 = x. For convenience, we relate the relativistic 
coupling to the nonrelativistic one,

x = xnr
√

mXm∗m, (6)

Fig. 1. Decay mechanism for the transitions X(3872) → γ ψ where ψ = J/ψ or ψ ′ if the X(3872) is a D D̄∗ hadronic molecule. Here both charged and neutral charmed
mesons are taken into account in the first four diagrams. The charge conjugated diagrams are not shown but included in the calculations.Example: X production in large pT reactions

both cannot measure the molecular component

But natural explanation for Y (4260) → πZc(3900) and
Wang, C. H., Zhao, PRL111 (2013) no.13, 132003

and prediction of Y (4260) → γX (3872) Guo et al., PLB 725 (2013) 127-133

.... more examples below
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EXAMPLE 1: Y (4230) AS D1D̄ MOLECULE

Inclusion of D1D̄ intermediate states (gYD1D large for molecule)
Inclusion of charmonium ψ(4160) (Mψ(4160) = 4191 MeV)

L. von Detten, V. Baru, CH, Q. Wang, D. Winney, Q. Zhao; PRD109(2024)116002

Y (4330)
only seen in J/ψππ
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IMPACT OF ψ(4160)
Well established c̄c state

Parameters from RPP2023:
2023 update of R. L. Workman et al. [PDG], PTEP2022 (2022)083C01

mΨ(4160) = (4191±5) MeV
ΓΨ(4160) = (70±10) MeV

Experimental extractions:

D0D∗−π+: ΓY=(77±6.3±6.8)MeV
BESIII, PRL130(2023) 121901

J/ψπ+π−: ΓY=(41.8±2.9±2.7)MeV
BESIII, PRD106(2022)072001

in both cases ψ(4160) omitted

µ+µ−: ΓY=(47.2±22.8±10.5)MeV
BESIII, PRD102(2020)112009

with ψ(4160) included
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ROLE OF D1D̄ CUT π+ D∗−

D0
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Tree-
level

Triangle

Box

Triangle

Significance of D1D̄ cut linked to molecular component!
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EXAMPLE II: POS. PARITY D MESONS
Starting point: chiral perturbation theory to NLO for GB-D-meson scattering

However, only perturbatively consistent with unitarity =⇒ Unitarisation
Truong, Dorado, Pelaez, Kaiser, Weise, Oller, Oset, Lutz, Kolomeitsev, Guo, Meißner, C.H., ...

Observe Im(t(s)) = σ(s) |t(s)|2 implies Im
(
t(s)−1

)
= −σ(s)

=⇒ write subtracted dispersion integral for t(s)−1

=⇒ fix Re(t(s)−1) by matching to ChPT

Effectively this gives

with ChPT expression for V ... and additional parameter a(µ) (from the loop)

Dependence on unitarization method needs to be clarified!
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FIT TO LATTICE DATA
fit 4+1 para. to lattice data for a(S,I)

Dxϕ
in selected channels Liu et al. PRD87(2013)014508
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π/K/η–D(∗)/D(∗)
s scattering fixed (chiral sym: πD int. weaker than KD)

D∗
s0(2317) emerges as a pole with MD∗

s0
= 2315+18

−28 MeV (Eb = 47+28
−18);

since Eb(Ds0) = Eb(D∗
s1) +O(1/MD) =⇒ puzzel 2 solved

controlled quark
mass dependence
Fit range up to
Mπ = 500 MeV
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INTERPRETATION A LA WEINBERG

D∗
s0(2317): a= eff

g
eff

g +O(1/β) ≃ −
(

2(1−λ2)
2−λ2

)
1
γ

=⇒ a = −(1.05±0.36) fm for molecule (λ2=0); smaller otherwise

150 200 250 300 350 400
Mπ [MeV]

0.0

0.2

0.4

0.6

0.8

1.0

−
a
γ

pure molecule
Liu et al., PRD 87 (2013) 014508
Martinez Torres et al., JHEP 05 (2015) 153; data: Lang et al., PRD 90 (2014) 034510
RQCD, PRD 96 (2017) 074501
HadSpec, JHEP 02 (2021) 100

Various lattice studies show
under binding

study a γ (removes Eb dep.)

All analyses consistent with
purely molecular D∗

s0(2317)
(analogous for Ds1(2460))

=⇒ puzzel 1 solved
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THE S = 0 SECTOR
Keeping parameters fixed one gets:

Albaladejo et al., PLB767(2017)465; Lattice: Moir et al. [Had.Spec.Coll.] JHEP10(2016)011
Fits directly to these data: Z. H. Guo et al., EPJC 79(2019)13; M. F. M. Lutz et al., PRD106(2022)114038Poles for

Mπ≃391 MeV: (2264, 0) MeV [000] & (2468,113) MeV [110]
Mπ=139 MeV: (2105,102) MeV [100] & (2451,134) MeV [110]

Questions cq̄ nature of lowest lying 0+ D state, D∗
0(2300)
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SU(3) STRUCTURE FROM UCHPT
Albaladejo et al., PLB767(2017)465

m(x) = mphy + x(m − mphy)
mϕ = 0.49 GeV; MD = 1.95 GeV

SU(3) analysis

• In the SU(3) limit, irreps: 3⊗ 8 = 15⊕ 6⊕ 3

• Evolution of the two poles from the physical to the SU(3) symmetric case

Feng-Kun Guo (ITP) Charmed meson sspectrum 12.07.2018 9 / 21

Multiplets: [3]⊗[8]=[15]⊕[6]⊕[3]SU(3) analysis

• In the SU(3) limit, irreps: 3⊗ 8 = 15⊕ 6⊕ 3

• Evolution of the two poles from the physical to the SU(3) symmetric case

Feng-Kun Guo (ITP) Charmed meson sspectrum 12.07.2018 9 / 21

with [15] repulsive,
[6] attractive,
[3] most attractive

3 poles give observable effect with SU(3)-breaking on
At SU(3) symmetric point mϕ ≃ 490 MeV: 3 bound and 6 virtual states
The light Dπ state is the multiplet member of D∗

s0(2317)

=⇒ MD∗
s0(2317) − MD∗

0 (2100) = 217 MeV puzzle 3 solved
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SU(3) STRUCTURE

SU(3) analysis

• In the SU(3) limit, irreps: 3⊗ 8 = 15⊕ 6⊕ 3

• Evolution of the two poles from the physical to the SU(3) symmetric case

Feng-Kun Guo (ITP) Charmed meson sspectrum 12.07.2018 9 / 21

Albaladejo et al., PLB767(2017)465

Lattice shows repulsion in [15]
as predicted in UChPT

States in [6] found in UChPT and lattice: Hofmann and Lutz, NPA733(2004)142

S = −1

SU(3) analysis (2)

• Virtual state (S, I) = (−1, 0) DK̄ from lattice HadSpec, JHEP02(2021)100

Mπ = 138 MeV        Mπ = 239 MeV        Mπ = 391 MeV2000

2050
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D
K̄

 v
irt

ua
l s

ta
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 [M
eV

]

DK̄ threshold
Albaladejo et al., PLB 767 (2017) 465
UCHPT postdiction
HadSpec, JHEP 02 (2021) 100

Feng-Kun Guo (ITP) Exotic hadrons from an EFT perspective 12.08.2022 18 / 28

S = 0: Lattice finds virtual pole in [6] @Mπ ≈ 600 MeV
in line with UChPT prediction Gregory et al., [arXiv:2106.15391 [hep-ph]]+Lüscher analysis.

Confirmed by J.D.E. Yeo, C.E. Thomas and D.J. Wilson, [arXiv:2403.10498 [hep-lat]].

Quark Model: [3]⊗ [1] = [3] — the [6] is absent
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Dπ S-WAVE FROM B− → D+π−π−

35Where is the lowest charm-strange meson?
Du, Guo, Hanhart, Kubis, UGM, Phys.Rev.Lett. 126 (2021) 192001 [2012.04599]
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• Precise analysis of the LHCb data
on B− → D+π−π− using UChPT
and Khuri-Treiman eq’s (3-body unit.) → next slide

Aaji et al. [LHCb], Phys. Rev. D 94 (2016) 072001

• Breit-Wigner description not appropriate
for the S-wave but UChPT and the
dispersive analysis are!

• First determination of the Dπ phase shift

• The lowest charm-strange meson is located at:
(
2105+6

−8 − i 102+10
−11

)
MeV

• Recently confirmed by Lattice QCD!
Cheung et al. [HadSpec], JHEP 02 (2021) 100 [2008.06432]

BW withD?0(2300)

– Ulf-G. Meißner / Ch. Hanhart, Two-pole structures in QCD – PDG, CERN, Nov. 2022 –

Near threshold data (and lattice) need
pole near

√
sp ∼ (2105 − i102) MeV

Effect of DsK̄ thresholds enhanced, by
pole near

√
sp ∼ (2451 − i134) MeV

=⇒ two-pole structure solves puzzle 4
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CHARMED STATESExample: Strange-Charm states
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Quark Modell: M. Di Pierro and E. Eichten, PRD 64 (2001) 114004

Note: decay modes of D∗
s0(2317) and Ds1(2460) either D(∗)

s π or D(∗)
s γ → narrow

Lecture series onExotic MesonsPart I: Effective Field theories and their application to Ds(2317) – p. 10/20

S=0, I=1/2 S=1, I=0

Quark Modell: M. Di Pierro and E. Eichten, PRD 64 (2001) 114004

Puzzles solved:

1 M(Ds1)&M(D∗
s0) are

DK and D∗K bound
states

2 M(Ds1)−M(D∗
s0)

≃ M(D∗)−M(D),
since spin symmetry
gives equal binding

3 States with s-quark
heavier, e.g.
M(D∗

0) = 2100 MeV
M(D∗

s0) = 2317 MeV

4 Two pole structure,
not D0(2300)

... role of left-hand cuts needs to be clarified
Lutz et al., PRD106(2022)114038; Korpa et al., PRD107(2023)L031505
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SUMMARY AND CONCLUSION
For near threshold states Weinberg criterion provides proper diagnostics

View extended by studying the SU(3)f multiplet structure

what kinds of multiplets are there?

pattern of spin and flavor symmetry breaking important

Interplay of different poles leads to
non-trivial line shapes
non-trivial phase motions

We are on a good path to identify the hadronic molecules in the spectrum

... and to exploit their imprint on various observables

Thanks a lot for your attention
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BACK-UP SLIDES
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COMPACT TETRAQUARKS
The heavy-light diquarks, cq of spin 0 and spin 1, in the flavor [3]
line up with diquarks of light anti-quarks q̄q̄ : [3̄]⊗ [3̄] = [3]︸︷︷︸

anti−sym.

⊕ [6̄]︸︷︷︸
sym.Imposing Fermi symmetry: anti-sym. in color =⇒

spin 0 (anti-sym.) → flavor anti-sym. −→ flavor [3]
Combining with the cq diquark: [3]⊗ [3] = [3̄]⊕ [6]

L. Maiani, A. D. Polosa and V. Riquer, [arXiv:2405.08545 [hep-ph]] and talk by L. Maiani
But there should also be

spin 1 (sym.) → flavor sym. −→ flavor [6̄]
Combining with the cq diquark: [3]⊗ [6̄] = [3̄]⊕ [15]

Mass estimates:
Mcq[S = 1]− Mcq[S = 0] ≈ MD∗

s1(2460) − MDs0(2317) ≈ 140 MeV
Mqq[S = 1]− Mqq[S = 0] ≈ MΣc − MΛc ≈ 170 MeV

≈ 300 MeV

There should be a [15]-state about 300 MeV above 2.1 GeV
Why was it not seen on the lattice?
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CHIRAL LAGRANGIAN (1)

The leading order Lagrangian (no free parameters)

L(1)
ϕP = DµPDµP† − m2PP†

with P = (D0,D+,D+
s ) for the D mesons, and the covariant derivative

DµP = ∂µP + PΓ†µ, DµP† = (∂µ + Γµ)P†,

Γµ =
1
2
(
u†∂µu + u∂µu†) ,

where uµ = i
[
u†(∂µ − irµ)u + u(∂µ − ilµ)u†] , u = eiλaϕa/(2F0)

Burdman, Donoghue (1992); Wise (1992); Yan et al. (1992)

this gives the Weinberg–Tomozawa term for Pϕ scattering:

∝ Eϕ +O(1/MD) (S − wave)

Interaction of kaons significantly stronger than that of pions

Slide 21 18



CHIRAL LAGRANGIAN (2)
At the next-to-leading order p2 (6 free parameters)

F-K Guo, CH, S. Krewald, U.-G. Meißner, PLB666(2008)251

L(2)
ϕP = P [−h0⟨χ+⟩ − h1χ+ + h2⟨uµuµ⟩ − h3uµuµ]P†

+ DµP [h4⟨uµuν⟩ − h5{uµ,uν}]DνP†,

χ± = u†χu† ± uχ†u, χ = 2B0 diag(mu,md ,ms)

Low-energy constants:

h1 = 0.42: from MDs − MD

Same effective operator leads to strong isospin violation
mD+ − mD0 = ∆mstrong +∆me.m. = ((2.5 ± 0.2) + (2.3 ± 0.6)) MeV

h0: from quark mass dependence of charmed meson masses (lattice)

h2,3,4,5: fixed from lattice results on scattering lengths

calls for unitarisation =⇒ UChPT
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UNITARISATION
Truong, Dorado, Pelaez, Kaiser, Weise, Oller, Oset, Lutz, Kolomeitsev, Guo, Meißner, C.H., ...

ChPT is only perturbatively consistent with unitarity.

Observe Im(t(s)) = σ(s) |t(s)|2 implies Im
(
t(s)−1

)
= −σ(s)

=⇒ write subtracted dispersion integral for t(s)−1

=⇒ fix Re(t(s)−1) by matching to ChPT

Effectively this gives

with ChPT expression for V ... and additional parameter a(µ) (from the loop)

Dependence on unitarization method needs to be clarified!
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EXP. TEST: HADRONIC WIDTHHadronic width

prediction from UChPT without lattice data
prediction from UChPT using lattice data

predictions from various non-molecular approaches
0
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∗ s0
(2
31
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→
π
0
D

+ s
)

Measurement of width is decisive, if D∗
s0 is molecular or not

Experiment needs very high resolution → PANDA

Lecture series onExotic MesonsPart I: Effective Field theories and their application to Ds(2317) – p. 19/20

Genuine contribution:

EXP. TEST: HADRONIC DECAYS

mass differences, e.g.
mD+−mD0=∆mq+∆me.m. = ((2.5±0.2)+(2.3±0.6)) MeV
π0 − η mixing −→ parameters fixed

Isospin breaking scattering amplitude
e.g. KD → π0Ds predicted

Exp. Test: Hadronic decays
Faessler et al. PRD76(2007)014005; Lutz, Soyeur NPA813(2008)14; Guo et al., PLB666 (2008)251

Isospin breaking (drives decay) via quark masses and charges

The same effective operators lead to

→ mass differences, e.g.
⊲ mD+−mD0=∆mq+∆me.m. = ((2.5±0.2)+(2.3±0.6)) MeV
⊲ π0 − η mixing −→ parameters fixed

→ Isospin breaking scattering amplitude
⊲ e.g. KD → π0Ds predicted
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Specific for

molecules!

Lecture series onExotic MesonsPart I: Effective Field theories and their application to Ds(2317) – p. 18/20

Specific for

molecules!
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Specific for molecules:

EXP. TEST: HADRONIC DECAYS

mass differences, e.g.
mD+−mD0=∆mq+∆me.m. = ((2.5±0.2)+(2.3±0.6)) MeV
π0 − η mixing −→ parameters fixed

Isospin breaking scattering amplitude
e.g. KD → π0Ds predicted

Exp. Test: Hadronic decays
Faessler et al. PRD76(2007)014005; Lutz, Soyeur NPA813(2008)14; Guo et al., PLB666 (2008)251

Isospin breaking (drives decay) via quark masses and charges

The same effective operators lead to

→ mass differences, e.g.
⊲ mD+−mD0=∆mq+∆me.m. = ((2.5±0.2)+(2.3±0.6)) MeV
⊲ π0 − η mixing −→ parameters fixed

→ Isospin breaking scattering amplitude
⊲ e.g. KD → π0Ds predicted
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-

F.K. Guo et al., PLB666(2008)251; L. Liu et al. PRD87(2013)014508; X.Y. Guo et al., PRD98(2018)014510
and, e.g., P. Colangelo and F. De Fazio, PLB570(2003)180

Experiment needs very high resolution → PANDA

Predict MB∗
s0
= 5722 ± 14 MeV and various decays Fu et al., EPJA58(2022)70

Most recent lattice result: MB∗
s0
= 5699 ± 14 MeV Hudspith & Mohler, [arXiv:2303.17295 [hep-lat]].

Next: Study multiplet structure from GB-D-meson scattering

[k
eV

]
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OBSERVABLE: B− → D+π−π−

With ϕD amplitude fixed we can calculate production reactions:
Du et al., PRD98(2018)094018; for more results see Du et al., PRD99(2019)114002

Fit to LHCb data (2) Du et al., arXiv:1712.07957 [hep-ph]

• S-wave: use the coupled-channel (1: Dπ; 2 : Dη; 3 : DsK̄) amplitudes with all

parameters fixed before

• For the production vertex:

soft pion: pseudo-Goldstone boson; fast pion: matter field M

b→ c ūd ⇒ spurion field: H =




0 0 0

1 0 0

0 0 0


, t ≡ uHu†

Leff = B̄
[
c1 (uµtM +Mtuµ) + c2 (uµM +Muµ) t+ c3 t (uµM +Muµ) +

c4 (uµ〈Mt〉+M〈uµt〉) + c5 t〈Muµ〉+ c6〈(Muµ + uµM) t〉
]
∂µD†

where uµ = i
[
u†(∂µ − irµ)u+ u(∂µ − ilµ)u†

]
, u = eiλaφa/(2F )

Feng-Kun Guo (ITP) Charmed meson sspectrum 12.07.2018 13 / 21

for the S-wave (two free para.);
other partial waves from BW-fit

Fit to LHCb data (3) Du et al., arXiv:1712.07957
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• The S-wave Dπ well described using our amplitudes with pre-fixed LECs (the

same as before)

• Fast variation in [2.4, 2.5] GeV in 〈P13〉: cusps at Dη and DsK̄ thresholds

Feng-Kun Guo (ITP) Charmed meson sspectrum 12.07.2018 14 / 21

LHCb, PRD94(2016)072001

⟨P0⟩ ∝ |A0|2+|A1|2+|A2|2 , ⟨P2⟩ ∝ 2
5 |A1|2+ 2

7 |A2|2+ 2√
5
|A0||A2| cos(δ2−δ0)

⟨P13⟩ ≡ ⟨P1⟩ − 14
9 ⟨P3⟩ ∝ 2√

3
|A0||A1| cos(δ1 − δ0)
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LIGHTEST CHARMED SCALAR

35Where is the lowest charm-strange meson?
Du, Guo, Hanhart, Kubis, UGM, Phys.Rev.Lett. 126 (2021) 192001 [2012.04599]
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• Precise analysis of the LHCb data
on B− → D+π−π− using UChPT
and Khuri-Treiman eq’s (3-body unit.) → next slide

Aaji et al. [LHCb], Phys. Rev. D 94 (2016) 072001

• Breit-Wigner description not appropriate
for the S-wave but UChPT and the
dispersive analysis are!

• First determination of the Dπ phase shift

• The lowest charm-strange meson is located at:
(
2105+6

−8 − i 102+10
−11

)
MeV

• Recently confirmed by Lattice QCD!
Cheung et al. [HadSpec], JHEP 02 (2021) 100 [2008.06432]

BW withD?0(2300)

– Ulf-G. Meißner / Ch. Hanhart, Two-pole structures in QCD – PDG, CERN, Nov. 2022 –

Mass of lightest charmed JP = 0+ state:

BW with m = 2300 MeV incompatible
with data

UChPT with
(2105 ± 8 − i(102 ± 11)) MeV
is compatible Du et al., PRL126(2021)192001

Low mass confirmed by Lattice QCD
(2196 ± 64 − i(210 ± 110)) MeV
at Mπ = 239 MeV HadSpec, JHEP07(2021)123

Analogous picture for JP = 1+

momenta here imply isospin I ¼ 2 and therefore nonreso-
nant partial waves, the relative angular momentum of π0π−

in the decay B− → D0π0π− is by far dominantly odd in the
low-energy regime forD0π0, and the ρ− plays a crucial role.
If we assume that the decay B− → Dþπ−π− is dominated

by the process in Fig. 2, the Dπ S-wave part of the triangle
diagram can be estimated by the integral

Atrig
0 ðsÞ ¼ 1

π

Z
∞

sth

ds0
P̂ðs0Þρðs0ÞTD0π0→Dþπ−ðs0Þ

s0 − s
; ð5Þ

where P̂ðsÞ is the production amplitude for B− → D0ρ− →
D0π0π− projected to the D0π0 s channel, ρðsÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λðs;M2

D;M
2
πÞ

p
=ð16πsÞ is the Dπ phase space with

λða; b; cÞ ¼ a2 þ b2 þ c2 − 2ab − 2ac − 2bc the Källén
function, TD0π0→Dþπ−ðsÞ the S-wave scattering amplitude
for D0π0 → Dþπ−, and sth ¼ ðMD þMπÞ2. The expres-
sion for P̂ðsÞ is the same as F̂ 1=2

0 ðsÞ in Eq. (12) below.
The evaluation of Eq. (5) depends on the asymptotic

behavior of the integrand, which is divergent in
general. We may estimate Eq. (5) using a cutoff atffiffiffiffiffiffiffiffiffi
smax

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2max þM2

D

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2max þM2

π

p
, where qmax ≈

1 GeV (another way is to introduce a form factor, e.g.,
e−ðs−sthÞ=s0 with s0 ¼ Oð1 GeVÞ [48]). We evaluate Eq. (5)
by employing both the Dπ scattering amplitude from
UChPT [19] and that of a Breit-Wigner (BW) parametri-
zation of the D�

0ð2300Þ for comparison, despite the defi-
ciencies of the latter discussed in Ref. [39]; see also
Ref. [49].
The results with qmax ¼ 1 GeV are shown in Fig. 1,

where the solid blue band and the green dashed band
correspond to the Dπ scattering amplitudes from UChPT
and BW, respectively. The obtained phase describes the
data perfectly for the UChPT amplitude, while the BWone
fails. We have checked that the obtained phases are
insensitive to a variation of the cutoff in a reasonable
region, qmax ∈ ½0.8; 1.2� GeV.
Khuri-Treiman formalism.—While Eq. (5) provides

a reasonable estimation of the S-wave decay amplitude
with a clear underlying physical picture, it does not respect

three-body unitarity. In order to check if the conclusion
formulated above is robust, we cure this deficiency by
employing the Khuri-Treiman equations [50], which are
based on two-body elastic phase shifts and explicitly
generate the crossed-channel rescattering between final-state
particles. The formulas are constructed from dispersion
relations for the related crossed scattering processes and
then analytically continued to the decay region, referring to
the continuation of the triangle graph [51].
We can write amplitudes for Aþ−−ðB− → Dþπ−π−Þ and

A00−ðB− → D0π0π−Þ in terms of single-variable functions
according to a reconstruction theorem [47,52],

Aþ−−ðs; t; uÞ ¼ F 1=2
0 ðsÞ þ κðsÞ

4
zsF

1=2
1 ðsÞ

þ κðsÞ2
16

ð3z2s − 1ÞF 1=2
2 ðsÞ þ ðt↔ sÞ;

A00−ðs; t; uÞ ¼ −
1ffiffiffi
2

p F 1=2
0 ðsÞ− κðsÞ

4
ffiffiffi
2

p zsF
1=2
1 ðsÞ

−
κðsÞ2
16

ffiffiffi
2

p ð3z2s − 1ÞF 1=2
2 ðsÞ þ κuðuÞ

4
zuF 1

1ðuÞ;

ð6Þ
where the subindex l and superindex I of the single-
variable amplitudes F I

l represent the angular momentum
and isospin, respectively, and only the I < 3=2 and l ≤ 2
terms are taken into account. The Mandelstam variables of
the B-meson decay B−ðpBÞ → DðpDÞπðp1Þπ−ðp2Þ are
s ¼ ðpB − p2Þ2, t ¼ ðpB − p1Þ2, and u ¼ ðpB − pDÞ2.
The corresponding angles are given by

zs ≡ cos θs ¼
sðt − uÞ − Δ

κðsÞ ; zu ≡ cos θu ¼
t − s
κuðuÞ

; ð7Þ

where κðsÞ¼λ1=2ðs;M2
D;M

2
πÞλ1=2ðs;M2

B;M
2
πÞ, κuðuÞ ¼

λ1=2ðu;M2
B;M

2
DÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4M2

π=u
p

, and Δ ¼ ðM2
B −M2

πÞ×
ðM2

D −M2
πÞ.

Since we are interested in the s-channel process, we use
the index A (B) to label the two-body channels correspond-
ing toDþπ− andD0π0. The partial-wave decomposition for
the decay amplitudes AA reads

AAðs; zsÞ ¼
X
I;l

bAI;lPlðzsÞfIlðsÞ; ð8Þ

with bAI;l denoting Clebsch-Gordan coefficients. By
comparing with Eq. (1), it is easy to obtain AlðsÞ ¼
ð2lþ 1Þ−1=2PI b

1
I;lf

I
lðsÞ. We have the following partial-

wave unitarity relation for elastic rescattering:

disc fIlðsÞ ¼ 2ifIlðsÞ sin δIlðsÞe−iδ
I
lðsÞθðs − sthÞ; ð9Þ

where δIlðsÞ is the elastic final-state scattering phase shift.
The discontinuities of fIl and those of the single-variable

FIG. 2. The decay B− → Dþπ−π− via the coupled channel
B− → D0π0π−. The filled square denotes the D0π0 → Dþπ− T-
matrix element.

PHYSICAL REVIEW LETTERS 126, 192001 (2021)

192001-3
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POLE STRUCTURE FROM LATTICE STUDY
Lattice study reported only bound state pole Moir et al. [Had.Spec.Coll.] JHEP10(2016)011

Second pole was present, but location depends on amplitude model4
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Pole Locations on RS221

Fig. 2 The location of poles on sheet RS221 on the complex energy
plane. The 𝑥-axis and 𝑦-axis show the real and imaginary part of
energy, respectively. The poles from the amplitude parametrizations
employed in Ref. [24] are shown in yellow. The pole from the UChPT
amplitude [19] is shown in green [14]. The vertical green and blue
dashed lines represent the 𝐷𝜂 and 𝐷𝑠𝐾̄ thresholds, respectively. The
error bars show the 1𝜎 statistical uncertainty.

This prescription is straightforwardly generalized to arbitrary
transitions between sheets.
At a pion mass of about 391 MeV, the lowest pole in the

studied channel turns out to be a bound state, accordingly lo-
cated on sheet RS111 [24]; the same conclusion was reached
in UChPT in Ref. [14]. This pole was found in the fits of
all 9 parametrizations employed by the Hadron Spectrum
Collaboration [24]. At the same time, additional poles were
found on sheets RS211, RS221, and RS222. These additional
poles were found for almost all amplitude paramterizations
employed in Ref. [24], which were, however, not reported
in the publication since they not only scatter very much, but
also are in parts located outside the energy region where the
fit was performed. Table 3 shows the pole values found from
the search with the corresponding sheets from the different
amplitude parametrizations. The 1𝜎 uncertainties of the pole
values were calculated by the bootstrap method.
Graphically the poles on RS221 are displayed in Fig. 2.

In the following we focus the discussion on this sheet, since
this is the one where the UChPT amplitude has its most
prominent higher 𝐷∗

0 pole at physical [15] as well as the
unphysical meson masses employed in the lattice study [14].
The plots of the pole locations of the higher pole for the
different parametrizations on the other Riemann sheets that
connect closely to the physical axis (RS211 and RS222) are
shown in the Appendix. Table 4 gives the location of the
corresponding two particle thresholds.
Figure 2 and Fig. 13 in the Appendix and Table 3 clearly

show two important features of the poles extracted from dif-
ferent parametrizations: (𝑖) There is a significant correlation
between real part and imaginary part of the poles, and the
location of the pole extracted from the UChPT analysis is in
line with that correlation. (𝑖𝑖) All poles are located on hidden

sheets, which are the sheets that are not directly connected
to the physical sheet. For example, the RS221 poles are well
above the 𝐷𝑠𝐾̄ threshold. Thus they are all shielded by the
RS222 sheet and their effect on the amplitude can hardly
be seen above the 𝐷𝑠𝐾̄ threshold. As we discuss in the fol-
lowing, both features together guide one to an understanding
that there indeed needs to be a second pole in an amplitude
that describes the lattice data and that it is natural that the
original analysis performed on the lattice data lead to badly
constrained pole locations. The mechanism underlying this
is that the distance from the threshold is overcome by an
enhanced residue. This mechanism, also reported e.g. for the
case of the 𝑓0 (980) and 𝑎0 (980), was observed before as a
general feature of Flatté amplitudes [26].

2.2 Residues and Threshold distance

A resonance is characterized by the pole location, tradition-
ally parametrized as
√
𝑠𝑝 = 𝑀 − 𝑖Γ/2. (13)

Please note that the parameters 𝑀 and Γ, derived from the
pole location, agree to those found e.g. in the BW fits only
for narrow, isolated resonances — for details see the review
on resonances in Ref. [8]. Equally fundamental resonance
properties are provided by the pole residues. A pole-residue
quantifies the couplings of the resonance to the various chan-
nels. The residues of a pole located at 𝑠 = 𝑠𝑝 are defined as

𝑅𝑖 𝑗 = lim
𝑠→𝑠𝑝

(𝑠 − 𝑠𝑝)𝑇𝑖 𝑗 (𝑠). (14)

The residues can be easily obtained using the L’Hôpital rule
to compute the limit:

𝑅𝑖 𝑗 =

(
𝑑

𝑑𝑠
𝑇−1
𝑖 𝑗

)−1

𝑠=𝑠𝑝

. (15)

Since the residues factorize according to 𝑅2
𝑖 𝑗 = 𝑅𝑖𝑖𝑅 𝑗 𝑗

one can define an effective coupling via

𝑔𝑟𝑖 = 𝑅𝑖 𝑗/
√︁
𝑅 𝑗 𝑗 , (16)

which has dimension [mass]. The index 𝑟 is meant to dis-
tinguish the residues from the parameters 𝑔𝑖 that appear in
the 𝐾-matrix in Eq. (2). The couplings 𝑔𝑟𝑖 characterize the
transition strengths of the resonance to the channel. Those
residues can also be extracted from production reactions and
are independent of how the resonance was produced.
Since the poles of interest here are hidden, their effect

on the physical axis is visible only at the thresholds irre-
spective of their exact pole locations. Moreover, the visible
effect in the amplitude on the physical axis from a pole on
a hidden sheet close to the threshold with a small residue

2

by the Hadron Spectrum Collaboration in Ref. [23] reported
only one 𝐷∗

0 state just below the 𝐷𝜋 threshold, with the
pion mass of about 391 MeV. In this paper, we will discuss
whether the higher 𝐷∗

0 pole is consistent with the lattice
data, and propose a 𝐾-matrix formalism constrained with
the SU(3) flavor symmetry that can be used in analyzing
coupled-channel lattice data.

2 Analysis of the Amplitude from the Lattice study

In Ref. [23] lattice data for the strangeness zero, isospin-1/2
channel at a pion mass of about 391MeVwere presented and
analyzed with a sizable set of 𝐾-matrix parametrizations of
the kind

𝐾𝑖 𝑗 =

(
𝑔 (0)𝑖 + 𝑔 (1)𝑖 𝑠

) (
𝑔 (0)𝑗 + 𝑔 (1)𝑗 𝑠

)
𝑚2 − 𝑠 + 𝛾 (0)𝑖 𝑗 + 𝛾 (1)𝑖 𝑗 𝑠, (2)

where 𝑖 and 𝑗 label the different reaction channels and 𝑚,
𝑔 (𝑛)𝑖 and 𝛾 (𝑛)𝑖 𝑗 are real parameters to be determined in the fit
to the lattice data. From this, the 𝑇-matrix for the 𝑆-wave
coupled-channel (𝐷𝜋-𝐷𝜂-𝐷𝑠𝐾̄) scattering is given by

𝑇 (𝑠) = −16𝜋 𝑇𝐾 (𝑠), (3)

with 𝑇𝐾 (𝑠) defined as

𝑇−1
𝐾 (𝑠)𝑖 𝑗 = 𝐾−1 (𝑠)𝑖 𝑗 +

(
𝐼 (𝑖)CM (𝑠) − 𝐼

(𝑖)
CM (𝑚2)

)
𝛿𝑖 𝑗 , (4)

where the second term on the right-hand side contains the
Chew-Mandelstam function, subtracted at the 𝐾-matrix pole
parameter 𝑚. It is given by

𝐼 (𝑖)CM (𝑠) =
𝜌𝑖 (𝑠)
𝜋
log

[
𝜉𝑖 (𝑠) + 𝜌𝑖 (𝑠)
𝜉𝑖 (𝑠) − 𝜌𝑖 (𝑠)

]

−𝜉𝑖 (𝑠)
𝜋

𝑚 (𝑖)
2 − 𝑚 (𝑖)

1

𝑚 (𝑖)
1 + 𝑚 (𝑖)

2

log
𝑚 (𝑖)
2

𝑚 (𝑖)
1

, (5)

with

𝜉𝑖 (𝑠) = 1 −

(
𝑚 (𝑖)
1 + 𝑚 (𝑖)

2

)2
𝑠

, (6)

𝜌2𝑖 (𝑠) = 𝜉𝑖 (𝑠)
(
1 − (𝑚 (𝑖)

1 − 𝑚 (𝑖)
2 )2

𝑠

)
, (7)

where 𝑚 (𝑖)
1 and 𝑚

(𝑖)
2 are the masses of the two particles in

channel 𝑖 and 𝑠 is the centre-of-mass (c.m.) energy squared.
The imaginary part of 𝑇−1

𝐾 (𝑠)𝑖 𝑗 is then given by the phase-
space factor −𝛿𝑖 𝑗 𝜌 𝑗𝜃

(√
𝑠 − 𝑚 (𝑖)

1 − 𝑚 (𝑖)
2

)
, which automati-

cally ensures the unitarity of the 𝑆-matrix.
The nine parametrizations presented in Ref. [23] differed

by the set of parameters that was allowed to vary in the course
of the fit. The parameters present in the different amplitudes
along with their reduced 𝜒2 values from energy level fits
performed in Ref. [23] are given in Table 1.

Fig. 1 Illustration for the sheet labeling in the case of two channels.

2.1 Pole Search

The 𝑇-matrix is analytic over the whole complex energy
plane except for poles and branch cuts along the real axis
due to kinematic (right-hand cuts) and dynamic singulari-
ties (left-hand cuts). Dynamic singularities (left-hand cuts)
are associated with the interactions in the crossed channels.
Since those are usually distant, one assumes that their ef-
fect can be captured by polynomial terms allowed in the
parametrization of the 𝐾-matrix used. Right-hand cuts start
from branch points that appear whenever a channel opens.
Accordingly, at each threshold the number of Riemann sheets
of the complex energy (or 𝑠) plane gets doubled. Thus,
the three-channel case studied here leads to eight Riemann
sheets. The sheets are labeled as shown in Table 2, where the
thresholds are arranged with increasing energies 1 = 𝐷𝜋,
2 = 𝐷𝜂 and 3 = 𝐷𝑠𝐾̄ . For illustration we show in Fig. 1 the
analogous labeling for two channels. See Fig. 3 of Ref. [24]
for the three-channel case.
The poles correspond to bound states or resonances de-

pending on their location on the Riemann sheets. Bound
states correspond to poles on the physical sheet below the
lowest threshold energy and resonances are poles in the com-
plex plane of the unphysical sheets (in addition there are
virtual state poles, located on the real axis of unphysical
sheets, but those do not play a role in this work). The poles
on the sheets closest to the physical sheet have the strongest
influence on the scattering amplitude. In the current nota-
tion sheets RS211, RS221, and RS222 would be directly
connected to the physical sheet, i.e., RS111, above the re-
spective thresholds (c.f. Fig. 1). The poles of the 𝑇-matrix
are given by the zeroes of the determinant of the matrix in
Eq. (4), i.e.,

det
(
𝐾−1 (𝑠) + (𝐼CM (𝑠) − 𝐼CM (𝑚2))

)
= 0. (8)

The unphysical sheets can be accessed by adding the dis-
continuity across the branch cut to Eq. (4). Via the Schwarz
reflection principle the discontinuity across the branch cut is

Poles located on hidden on sheet A. Asokan et al., EPJC83(2023)850

Pole locations correlated; in line with pole from UChPT
Distance to threshold balanced by size of residue V. Baru et al.,EPJA23(2005)523

Explains correlation between Re(pole) and Im(pole)

.
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