

PAUL SCHERRER INSTITUT

Status of the MUon Scattering Experiment (MUSE) at PSI

Dr Matt Nicol - University of South Carolina Exotic Hadron Spectroscopy Workshop - 2nd July 2024

Supported in parts by the U.S. National Science Foundation: NSF PHY-2111050 (USC). The MUSE experiment is supported by the U.S. Department of Energy, the U.S. National Science Foundation, the Paul Scherrer Institute, and the US-Israel Binational Science Foundation

CONTENT

Proton Radius Puzzle

- **MUSE Experiment**
- **MUSE** Analysis
- **MUSE Outlook**
- Summary

1

2

3

4

5

1. Proton Radius Puzzle

Proton radius puzzle naufe

Discrepancy between radius measured by electrons and muons

8 July 2010 www.nature.com/nature £10

THE INTERNATIONAL WEEKLY JOURNAL OF SCIENCE

MARINE OIL SPILLS Get it right next time

BIODIVERSITY AND BUSINESS The importance of costing the Earth

EARLY EUROPEANS

SHRINKING THE PROTON

New value for charge radius of key subatomic particle

Contract research

Nature 466, 213 (2010)

UN POL

Proton radius puzzle: 2013

5/30

 Atomic-hydrogen spectroscopy and electron scattering agree

 First muonic-hydrogen spectroscopy measurement of proton radius published in 2010

 Significant disagreement between muon and electron results

 Muonic-hydrogen confirmation measurement in 2013

Proton radius puzzle: now

- Inconsistent electron-proton scattering and atomic-hydrogen data
- Muonic-hydrogen value 0.8409 fm
- No adequate muon-proton scattering data

6/30

CODATA'06 (2008) Bernauer *et al.* (2010) Pohl *et al.* (2010) Zhan *et al.* (2011) CODATA'10 (2012) Antognini *et al.* (2013) CODATA'14 (2015) Beyer *et al.* (2017) 2S-4P Fleurbaey *et al.* (2018) 1S-3S Mihovilovič *et al.* (2019) Bezginov *et al.* (2019) 2S-2P Xiong *et al.* (2019) 2S-2P Xiong *et al.* (2019) Grinin *et al.* (2020) 1S-3S CODATA'18 (2021) Brandt *et al.* (2022) 2S-8D

0.81

Electron-proton scattering Atomic hydrogen spectroscopy Muonic hydrogren spectroscopy

CODATA

Proton radius puzzle

7/30

Two electron-proton scattering experiments.

Why are form factors different?

Which result should be favoured and why?

Independent checks needed:

- MUSE
- ISR
- ULQ2

Radiative corrections

Do we know these well enough?

Lepton universality

Are leptons universal or do we go beyond the standard model?

?

7

Why so different?

2

?

8/30

Experiment or analysis

Errors in experiment or analysis?

Scattering Experiments

Data taken

Running

Future

9/30

Beam	e-	e+	μ-	μ+
PRad	√			
Mainz 2010	√			
Mainz ISR	√			
Mainz Jet	\checkmark			
MUSE PSI	√	√	√	√
ULQ2 ELPH	\checkmark			
AMBER CERN			√	√
MAGIX MESA	\checkmark			
PRES MAMI	√			
PRad-II JLab	\checkmark			

- come
- experiment
- experiment

 Many different scattering experiments underway and to

 MUSE is first muon-scattering • AMBER to follow soon

• MUSE is the only simultaneous electron- and muon-scattering

Scattering Experiments Muon protor scattering Is muon-proton scattering

Electronproton scattering

Atomichydrogren spectroscopy

Muonichydrogen spectroscopy

2. MUSE Experiment

MUSE Experiment: Possibilities

Simultaneous electron and muon scattering

Lepton universality Radiative effects much smaller for muons than electrons

Radiative corrections

12/30

Both charge polarities gives access to explore

Two-photon exchange

MUSE Experiment: PSI

Secondary beams of π , e, μ produced at M-target with 590 MeV protons

The world's most powerful low-energy, separated π ,e, μ beam

MUSE Experiment: πM1 Beamline

Secondary beam directed to $\pi M1$ experimental hall

Beam properties well understood with **TRANSPORT**, **TURTLE**, and **G4Beamline** (E. Cline et al., PRC105, 055201 (2022))

MUSE Experiment: Overview

- 3.3 MHz total beam flux
 - ∘ **≈ 2-15%** μ's
 - ≈ 10-98% e's
 - ≈ 0-80% π's
- p = 115, 160, 210 MeV/c
- Q²≈ 0.002 0.07 GeV²
- θ ≈ 20° 100°
- 180° coverage in ϕ

MUSE Experiment: Beamline Detectors Beam Hodoscope GEMs Timing and particle ID Tracking of incident particle

MUSE Experiment: Scattering Detectors Straw Tube Tracker Scattered Particle Scintillator Tracking of scattered particle Scatter trigger and reaction ID

17/30

MUSE Experiment: VETO Detectors Beamline VETO Target Chamber Post VETOs Remove scatters from exit Remove decays posts

MUSE Experiment: VETO Detectors

Beam Monitor Remove Moller and Bhabha scattering

19/30

ETO Detectors Calorimeter Remove hard initial-state radiation events

Full cell For proton scattering

Empty cell For background subtraction

Rod Target For alignment and resolution

P. Roy et al., A Liquid Hydrogen Target for the MUSE Experiment at PSI, NIM A, 2019, https://doi.org/10.1016/j.nima.2019.162874

3. MUSE Analysis

MUSE Analysis: Beam particle ID

RF of all planes, p = 160 MeV/c

 Time from accelerator and BH used to give RF time

 Proton beam pulses every 19.75 ns

> π, e, μ beam particles separated by RF

MUSE Analysis: Reaction ID

Outgoing beta of particles identified as muons, p = +115 MeV/c

MUSE Analysis: Vertex Reconstruction

MUSE Analysis: Vertex Reconstruction

P. Roy et al., A Liquid Hydrogen Target for the MUSE Experiment at PSI, NIM A, 2019, <u>https://doi.org/10.1016/j.nima.2019.162874</u>

Luminosity-normalised full and empty cells for 210 MeV/c π + beam

4. MUSE Outlook

MUSE Outlook: Anticipated Results

MUSE could help understand the discrepancies between Mainz and the PRad data

Sub-percent uncertainties

PRad-II will provide an improvement on PRad by a factor of 4

27/30

Anticipated form factor uncertainty

- PRad data
- PRad fit
- Mainz data
- Mainz fit
- Mainz fit uncertainty
- Mainz fit, forced $r_p = 0.841$ fm
- Arrington 07
- Alarcón 19, $r_p = 0.841$ fm
- \rightarrow MUSE data uncertainty on G_E
- Projected MUSE uncertainty

E. Cline, et al., SciPost Phys. Proc. 5, 023(2021)

MUSE Outlook: Current Status

MUSE taking ~5 months data this year Anticipate similar in 2025

Preliminary, blinded cross-sections are being extracted

Discussions about path to unblinding underway

5. Summary

Summary

MUSE will be the first ever muonproton scattering measurement looking to address the proton radius puzzle

Anticipated results with sub-percent uncertainties

Data taking on track to achieve statistical goals