Carnegie Mellon University

Recent results from GlueX

Naomi Jarvis

Carnegie Mellon University, Pittsburgh, PA, USA

for the GlueX Collaboration

Exotic Hadron Spectroscopy 2024

Swansea University, UK

July 2-4, 2024

GlueX objective: explore the light meson spectrum

• Lattice QCD predictions from Hadron Spectrum collaboration: Dudek et al PRD 88 (2013) 094505

Jefferson Lab

Evidence for exotic hybrid $\pi_1(1600)$

Evidence for $\pi_1(1600)$ in data from COMPASS, 2015 ٠

- JPAC re-analyzed published PW expansions ٠
- Coupled channel fit to $\eta\pi$ and $\eta'\pi$ partial waves ٠
- Determined pole positions for $a_2(1320)$, $a_2'(1700)$ ٠ and single exotic π_1 pole at 1564 MeV

Carnegie Mellon University

Motivation for studying meson photo-production with polarized beam

- Wide range of states is accessible, including all lightest hybrids
 - Photons oscillate to vector mesons (vector meson dominance)
 - Virtual particle exchanged with the target proton
 - Exchanged particle could be Pomeron, π , ρ , ω , ...
- Polarization provides information on reaction mechanism
 - Extra constraint for amplitude analysis
- Little existing high-energy photoproduction data

Exchange		Exotic Final States	
\mathbb{P}	0++	b, h, h'	$2^{+-}, 0^{+-}$
π^0	0-+	b_2, h_2, h_2'	2+-
π^{\pm}	0-+	π_1^{\pm}	1-+
ω	1	π_1,η_1,η_1'	1-+

Carnegie Mellon University

GlueX at Jefferson Lab, Newport News, VA, USA

- 12 GeV electron beam from CEBAF Continuous Electron Beam Accelerator Facility
- Polarized photon beam created in Tagger Hall
- GlueX spectrometer located in Hall D
- 5th pass beam

Carnegie Mellon University

GlueX polarized photon beam

- 12 GeV e⁻ beam on thin diamond crystal
- 9 GeV linearly polarized photons via coherent Bremsstrahlung
- Intensity 5 x 10^7 γ/s in coherent peak
- Scintillator arrays measure energy of each scattered e^- , 'tag' its photon E_{γ} tagging precision ~ 0.1% (resolution 5 MeV in coherent peak)
- ~ 40% linear polarization in coherent peak, measured in triplet polarimeter

Diamond 1cm x 1cm x 20-70µm

Photon flux and polarization

GlueX spectrometer

NIM A 987 (2021) 164807

Carnegie Mellon University

GlueX spectrometer

Carnegie Mellon University

GlueX physics pathway – from familiar to exotic

- Goal: explore spectrum of light hybrid mesons
- Strategy:
 - study known mesons first
 - develop and refine software
 - improve knowledge of acceptance
 - learn about production mechanisms
 - talk to theorists
- Importance of Spin Density Matrix Elements (SDMEs):
 - useful observable
 - production mechanism info
 - input for theory and useful for modelling background processes
 - very sensitive to acceptance
 - amplitude analysis uses similar formalism and <u>AmpTools</u> software for multi-dimensional fits
- Published SDMEs: Λ(1520) Phys.Rev. C105 (2022) 035201
 ρ(770) Phys.Rev. C108 (2023) 055204

Upcoming: Δ ++(1232) <u>https://arxiv.org/abs/2406.12829</u> Also working on ϕ (1020), ω (782)

Carnegie Mellon University

keep talking to theorists

Vector Meson Spin Density Matrix Elements

- Detailed theory predictions, but previous measurements limited
- SDMEs ρ_{ij}^{k} measured by angular distribution of decay products
- Linear beam polarization gives access to 9 SDMEs
- Intensity expanded in $\cos \theta$, ϕ in helicity frame, beam polarization P_{γ} and direction Φ

$$W(\cos\theta,\phi,\Phi) = W^{0}(\cos\theta,\phi) - P_{\gamma}\cos(2\Phi)W^{1}(\cos\theta,\phi) - P_{\gamma}\sin(2\Phi)W^{2}(\cos\theta,\phi)$$

$$W^{0}(\cos\theta,\phi) = \frac{3}{4\pi} \left(\frac{1}{2} (1-\rho_{00}^{0}) + \frac{1}{2} (3\rho_{00}^{0} - 1) \cos^{2}\theta - \sqrt{2} \operatorname{Re} \rho_{10}^{0} \sin 2\theta \cos\phi - \rho_{1-1}^{0} \sin^{2}\theta \cos 2\phi \right)$$

$$W^{1}(\cos\theta,\phi) = \frac{3}{4\pi} \left(\rho_{11}^{1} \sin^{2}\theta + \rho_{00}^{1} \cos^{2}\theta - \sqrt{2} \operatorname{Re} \rho_{10}^{1} \sin 2\theta \cos\phi - \rho_{1-1}^{1} \sin^{2}\theta \cos 2\phi \right)$$

$$W^{2}(\cos\theta,\phi) = \frac{3}{4\pi} \left(\sqrt{2} \operatorname{Im} \rho_{10}^{2} \sin 2\theta \sin \phi + \operatorname{Im} \rho_{1-1}^{2} \sin^{2}\theta \sin 2\phi \right)$$

Carnegie Mellon University

Naomi Jarvis – GlueX – Exotic Hadron Spectroscopy 2024 – 10

Production plane

Schilling et al <u>NPB15(1970)397</u>

 P_{γ}

Decay plane

× Z

 θ_{cm}

 π

X

- 2017 data \sim 10% of eventual dataset
- Combined fit of 4 polarization orientations
- Consistent with previous measurements
- Consistent with JPAC Regge exchange model

GlueX data: Phys.Rev. C108 (2023) 055204

SLAC data: Ballam et al Phys. Rev. D7 (1973) 3150

JPAC model: Mathieu et al Phys. Rev. D97 (2018) 094003

ρ_{1-1}^0 (helicity frame) from $\gamma p \rightarrow \rho(770) p \rightarrow \pi^+\pi^- p$

Jefferson Lab

ρ (770) Spin Density Matrix Elements

- SDMEs describe combinations of natural and unnatural parity exchange
- Unnatural parity components << natural parity components $\rho^{N}_{11} \sim 0.5$

PRC 108 (2023) 055204 GlueX SLAC PRD 7 (1973) 3150 JPAC PRD 97 (2018) 094003

Carnegie Mellon University

- Next progression in complexity is amplitude analysis of another non-exotic meson
- $a_2(1320)$ is well-known, not exotic, produced abundantly and decays via $\eta\pi$
- 2 decay modes comparison helps to improve acceptance and background removal techniques
- Plan to use $a_2(1320)$ as a standard reference to compare with smaller exotic contributions to $\eta'\pi$
- Understanding the $a_2(1320)$ in $\eta\pi$ is a key step towards $\eta'\pi$ and exotics

a₂(1320) in ηπ

• Clear signals at a₀(980) and a₂(1320) masses (not acceptance-corrected)

a₂(1320) in ηπ

- Clear signals at $a_0(980)$ and $a_2(1320)$ masses
- a₂(1320) angular distribution very different between charged and neutral decay modes

Different spin-projection states populated

Carnegie Mellon University

a₂(1320) in ηπ

- Clear signals at $a_0(980)$ and $a_2(1320)$ masses
- a₂(1320) angular distribution very different between charged and neutral decay modes
- Relative population changes with t

a₂(1320) in $\gamma p \rightarrow \eta \pi^0 p$ Semi-mass-independent amplitude analysis

• Amplitude formalism $Z_l^m(\Omega, \Phi) = Y_l^m(\Omega) e^{-i\Phi}$

JPAC: Mathieu et al PRD 100 (2019) 054017

Intensity $(\Omega, \Phi) =$

$$2\kappa \left\{ \left. \left(1 - P_{\gamma}\right) \left| \sum_{l,m} [l]_{m}^{(-)} \operatorname{Re}[Z_{l}^{m}(\Omega, \Phi)] \right|^{2} + \left(1 - P_{\gamma}\right) \left| \sum_{l,m} [l]_{m}^{(+)} \operatorname{Im}[Z_{l}^{m}(\Omega, \Phi)] \right|^{2} \right. \right. \\ \left. + \left. \left(1 + P_{\gamma}\right) \left| \sum_{l,m} [l]_{m}^{(+)} \operatorname{Re}[Z_{l}^{m}(\Omega, \Phi)] \right|^{2} + \left(1 + P_{\gamma}\right) \left| \sum_{l,m} [l]_{m}^{(-)} \operatorname{Im}[Z_{l}^{m}(\Omega, \Phi)] \right|^{2} \right. \right\}$$

Reflectivity + natural parity exchange Reflectivity - unnatural parity exchange

Naturality N = P(-1)^J N=+1 'natural' for 0+ etc Reflectivity = N(exchanged particle) x N(resonance)

Carnegie Mellon University

$a_2(1320)^0$ in $\gamma p \rightarrow \eta \pi^0 p$ Semi-mass-independent amplitude analysis

- Mass binned approach for the S-wave (complicated, includes double Regge + non-resonant processes)
- Model a₂(1320) using a Breit-Wigner, as it is reasonably well isolated

a₂(1320)⁰ differential cross-section from $\gamma p \rightarrow \eta \pi^0 p$

- Good agreement with TMD theory from JPAC Mathieu et al PRD 102 (2020) 014003
- Predominantly + reflectivity, ie natural parity exchange, eg ρ , ω
- Publication in preparation

Carnegie Mellon University

$\pi_1(1600)$ partial decay width predictions

- HadSpec, Woss et al PRD 103 (2021) 054502
- Lattice QCD predictions of partial decay widths of $\pi_1(1600)$ as a function of its mass
- $\pi_1(1600)$ decay channels are dominated by $b_1\pi$ (~95%); decays to $\omega\pi\pi$, final state 5π
- Experimentally, decay to $\eta\pi$ and $\eta'\pi$ might be easier to identify, although much less populated.

$\pi_1(1600)$ cross-section upper limit

- π_1 has isospin 1, predicted to decay predominantly to $b_1(1235)\pi$, then to $\omega\pi\pi$
- Measured cross-sections for $\gamma p \rightarrow \omega \pi^{+}\pi^{-}p$ $\omega \pi \pi$ isospin 0 and 1 $\gamma p \rightarrow \omega \pi^{0}\pi^{0}p$ $\omega \pi \pi$ isospin 0
- Used Clebsch-Gordan coefficients to obtain $\sigma(\omega\pi\pi)_{|=1} = \sigma(\omega\pi^+\pi^-) 2\sigma(\omega\pi^0\pi^0)$
- Also measured cross-section for $\gamma p \rightarrow \omega \pi^{-} \pi^{0} \Delta^{++} \qquad \omega \pi \pi \text{ isospin 1}$
- Fit the I=1 cross-section up to 1600 MeV as $a_2(1320) + \pi_1(1600)$ using Breit-Wigners (widths from PDG & JPAC)

Carnegie Mellon University

$\pi_1(1600)$ cross-section upper limit, projected into $\eta\pi$ and $\eta'\pi$

- Used decay widths from HadSpec PRD 103 (2021) 054502 to estimate upper limits for π_1 decaying to $\eta\pi$ and $\eta'\pi$
- Combined estimated maximum cross sections with GlueX luminosity and acceptance using Monte Carlo
- $\pi_1(1600)$ contribution appears to be small in $\eta\pi$, could be large in $\eta'\pi$
- Publication in preparation

---- GlueX-I Data a₂ MC Projection ----- π_1 MC Upper Limit

Carnegie Mellon University

Analysis of $\gamma p \rightarrow \eta' \pi^- \Delta^{++}$

- Invariant mass of $\eta' \pi^- vs \cos \Theta^{\eta'}_{GJ}$
- Striking forward/backward asymmetry, reminiscent of COMPASS data
- Amplitude analysis is ongoing

Carnegie Mellon University

Many GlueX analyses are in progress.

More publications are on the way.

Thank you for listening!

GlueX acknowledges the support of several funding agencies and computing facilities: <u>www.gluex.org/thanks</u>

The Carnegie Mellon Group is supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics, DOE Grant No. DE-FG02-87ER40315.

Carnegie Mellon University

Extra slides

Carnegie Mellon University

GlueX polarized photon beam

Radiators on goniometer

Diamond wafer size 1cm x 1cm x 20-70 μ m

The GlueX Beamline and Detector NIM A 987 (2021) 164807

Carnegie Mellon University

ρ (770) Spin Density Matrix Elements

- 2017 data ~ 10% of eventual dataset
- Combined fit of 4 orientations of polarization
- Good agreement with previous measurements and model
- Natural parity exchange dominates, exchanged virtual particle could be (eg) \mathbb{P} , ρ , ω ...

GlueX data: Phys.Rev. C108 (2023) 055204

SLAC data: Ballam et al PRD 7 (1973) 3150

JPAC model: Mathieu et al PRD 97 (2018) 094003

Carnegie Mellon University

Parity asymmetry for ρ (770) photoproduction

• SDMEs describe combinations of natural & unnatural parity exchanges

```
Naturality of exchanged J^{P} N = P(-1)<sup>J</sup>
```

```
N = +1 `natural', eg 0<sup>+</sup> \mathbb{P}, 1<sup>-</sup> \rho
```

```
N = -1 `unnatural', eg 0<sup>-</sup> \pi
```

Separate N and U from SDMEs to find parity asymmetry

$$P_{\sigma} = \frac{\sigma^{N} - \sigma^{U}}{\sigma^{N} + \sigma^{U}} = 2\rho_{1-1}^{1} - \rho_{00}^{1}$$

• Natural parity exchange dominates

Jefferson Lab

GlueX physics pathway – from familiar to exotic

- Goal: explore spectrum of light hybrid mesons
- Strategy:

- study known mesons first
 - develop and refine software
 - improve knowledge of acceptance
 - learn about production mechanisms
 - talk to theorists
- Importance of Spin Density Matrix Elements (SDMEs):
 - useful observable
 - production mechanism info
 - input for theory and useful for modelling background processes
 - very sensitive to acceptance
 - amplitude analysis uses similar formalism and <u>AmpTools</u> software for multi-dimensional fits
- Published SDMEs: Λ(1520) Phys.Rev. C105 (2022) 035201
 ρ(770) Phys.Rev. C108 (2023) 055204

Upcoming: Δ ++(1232) <u>https://arxiv.org/abs/2406.12829</u> Also working on ϕ (1020), ω (782)

look for exotics

keep talking to theorists

Carnegie Mellon University

 κ - kinematical factors

Nucleon spin flip k=1, non-flip k=0

Reflectivity $\varepsilon = \pm 1$ corresponds to naturality of exchanged particle $\eta = P(-1)^{j}$

- natural parity J^P = 0⁺, 1⁻, 2⁺, ...
- unnatural parity $J^P = 0^-$, 1⁺, 2⁻

Determine $[l]_{m;k}^{(-)}$, $[l]_{m;k}^{(+)}$ by fitting I_{EXP} using extended unbinned (in (θ, φ)) maximum likelihood method (AmpTools package <u>https://github.com/mashephe/AmpTools</u>)