

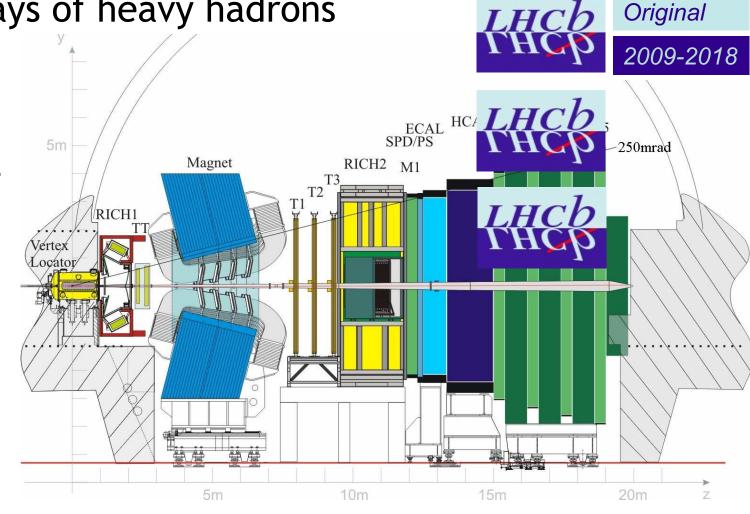
Contents

- Brief introduction
- Reminder of the LHCb experiment
- Recent results from LHCb
 - Amplitude analysis of $B^0 \to \overline{D}{}^0 D_s^+ \pi^-$ and $B^+ \to D^- D_s^+ \pi^+$ decays
 - Quick look at a new result from $B^+ \to D^{*-}D_s^+\pi^+$
 - Study of $B^+ \rightarrow D^{*\pm}D^{\mp}K^+$ decays
 - Radiative decays of $\chi_{c1}(3872)$
- Future prospects

Introduction

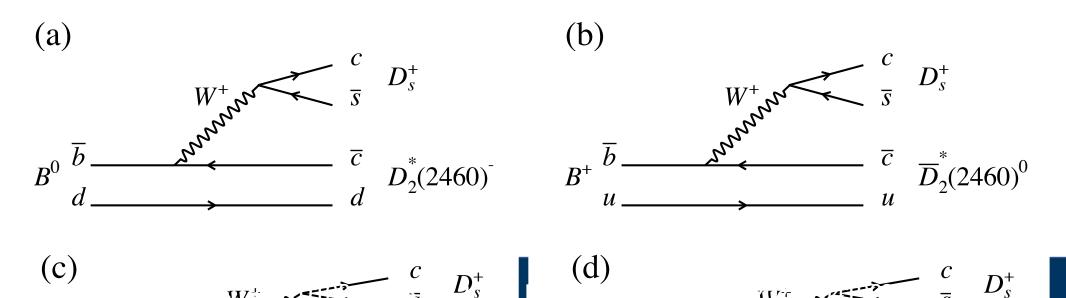
03/07/2024

Introduction


03/07/2024

The LHCb (MANCHESTER) CERN t

Designed to study weak decays of heavy hadrons


 Excellent track and vertex resolution provides high purity samples (>90%) easily for fully reconstructed decays

- Heavy hadrons decay into almost infinite final states
 - Study those decay products in a quasi-background free environment

- Brief introduction
- Reminder of the LHCb experiment
- Recent results from LHCb
 - Amplitude analysis of $B^0 \to \overline{D}{}^0 D_s^+ \pi^-$ and $B^+ \to D^- D_s^+ \pi^+$ decays
 - Quick look at a new result from $B^+ \to D^{*-}D_s^+\pi^+$
 - Study of $B^+ \to D^{*\pm}D^{\mp}K^+$ decays
 - Radiative decays of $\chi_{c1}(3872)$
- Future prospects

- Decays of B mesons to double charm final states now very popular
 - Following the discovery of new particles in $B^+ \to D^+ D^- K^+$ decays
- Isospin partner decays analysed together
 - Expect standard excited charm mesons in the $\overline{D}{}^0\pi^-$ and $D^-\pi^+$ channels
 - Anything else would likely be an exotic candidate

- Decays of B mesons to double charm final states now very popular
 - Following the discovery of new particles in $B^+ \to D^+ D^- K^+$ decays
- Isospin partner decays analysed together
 - Expect standard excited charm mesons in the $\overline{D}{}^0\pi^-$ and $D^-\pi^+$ channels
 - Anything else would likely be an exotic candidate
 - E.g. Z_{cs} tetraquark candidates seen to decay to $\overline{D}*D_s^+, \overline{D}D_s^{*+}$ and $J/\psi K$
 - Motivation to search in the $D_s^+\pi^-$ and $D_s^+\pi^+$ from theory side in analogy to $T_{cs(0,1)}(2900)^0$ candidates in the D^-K^+ system

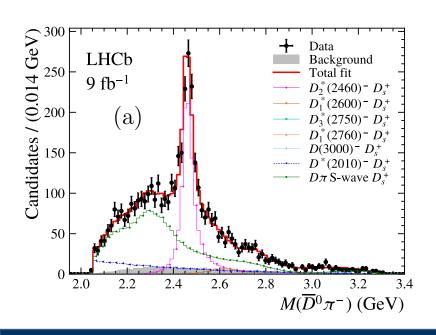
- Three data samples initially
 - $B^0 o \overline D^0 D_s^+ \pi^-$ with $\overline D^0 o K^+ \pi^-$ • $B^0 o \overline D^0 D_s^+ \pi^-$ with $\overline D^0 o K^+ \pi^- \pi^+ \pi^-$ • $B^+ o D^- D_s^+ \pi^+$ with $D^- o K^+ \pi^- \pi^-$
- Analysis uses the full Run 1 + Run 2 data sample of $9 fb^{-1}$
- Standard selections
 - Combinatorial background suppressed using a BDT (boosted decision tree)
 - Non-charm background surpassed with flight distance cuts

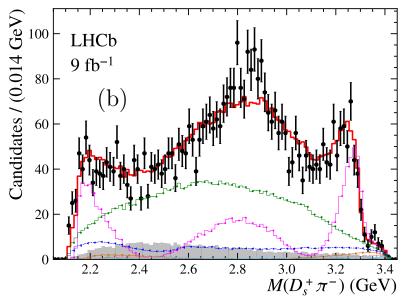
Candidates

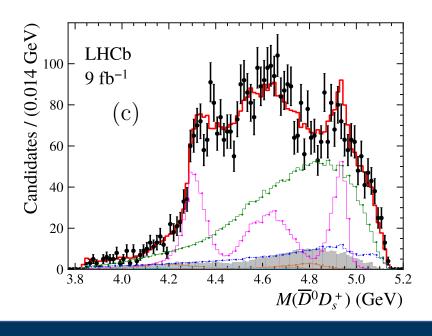
Candidates / (5.0 MeV

150

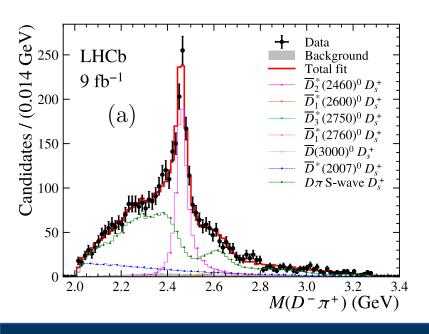
- Fit results
 - Full results in the backup slides
 - Focus here on the yields in the signal region of $\pm 20\,\mathrm{MeV}/c^2$ around the B mass
 - Corresponds to about 2.5-3 times the mass resolution

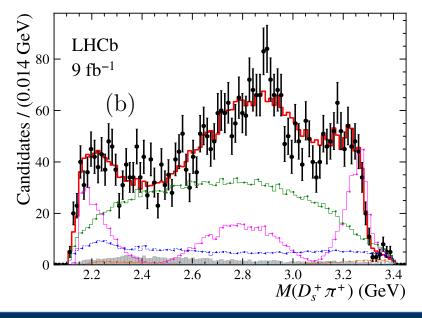

Decay	Parameter	Run 1	Run 2
	Signal yield	564 ± 26	2534 ± 55
$B^0 o \overline{D}_{K\pi}^0 D_s^+ \pi^-$	Total candidates	633	2753
	Purity	89.1%	92.1%
	Signal yields	177 ± 14	734 ± 31
$B^0 o \overline{D}_{K3\pi}^0 D_s^+ \pi^-$	Total candidates	199	835
110/1 0	Purity	88.9%	87.9%
	Signal yield	766 ± 29	2984 ± 57
$B^+ \to D^- D_s^+ \pi^+$	Total candidates	797	3143
	Purity	96.1%	94.9%

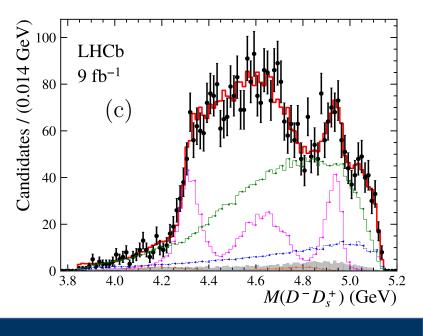

~4k signal candidates per channel

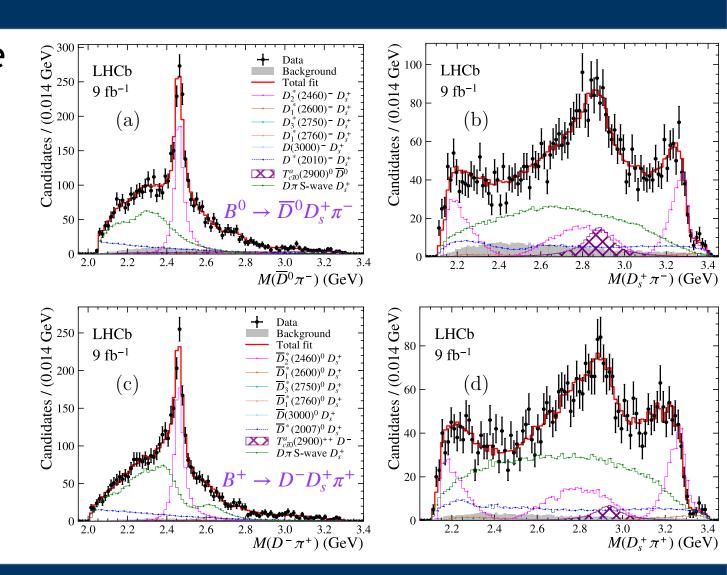

- Now need to perform an amplitude analysis
 - Take just the candidates from the signal regions and fix the yields
 - Include amplitudes for every sub-process that may contribute, starting with known/standard resonances

Resonance	J^P	Mass (GeV)	Width (GeV)	Comments
$\overline{D}^*(2007)^0$	1-	2.00685 ± 0.00005	$< 2.1 \times 10^{-3}$	Width set to be 0.1 MeV
$D^*(2010)^-$	1-	2.01026 ± 0.00005	$(8.34 \pm 0.18) \times 10^{-5}$	
$\overline{D}_{0}^{*}(2300)$	0+	2.343 ± 0.010	0.229 ± 0.016	#
$\overline{D}_{2}^{*}(2460)$	2^+	2.4611 ± 0.0007	0.0473 ± 0.0008	#
$\overline{D}_{1}^{*}(2600)^{0}$	1-	2.627 ± 0.010	0.141 ± 0.023	#
$\overline{D}_{3}^{*}(2750)$	3-	2.7631 ± 0.0032	0.066 ± 0.005	#
$\overline{D}_{1}^{*}(2760)^{0}$	1-	2.781 ± 0.022	0.177 ± 0.040	#
$D_J^*(3000)^0$??	3.214 ± 0.060	0.186 ± 0.080	$\# J^P = 4^+ \text{ is assumed}$

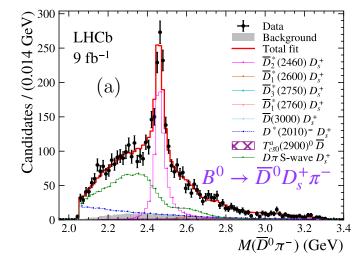

- Projections from the fit with the list of known excited charm mesons
 - Full $B^0 o \overline D^0 D_s^+ \pi^-$ dataset combining D decays and run periods
 - Good fit to data in the $\overline{D}{}^0\pi^-$ projection (left)
 - Some possible deficiencies in the $D_s^+\pi^-$ projection (centre)

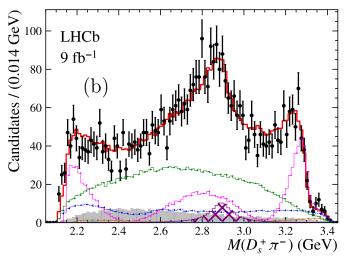




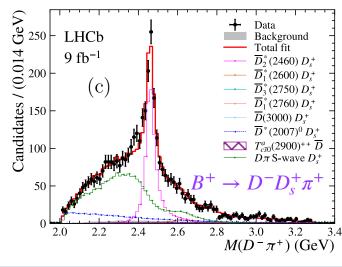

- Projections from the fit with the list of known excited charm mesons
 - Full $B^+ \to D^- D_s^+ \pi^+$ dataset combining D decays and run periods
 - Good fit to data in the $D^-\pi^+$ projection (left)
 - Some possible deficiencies in the $D_s^+\pi^+$ projection (centre)

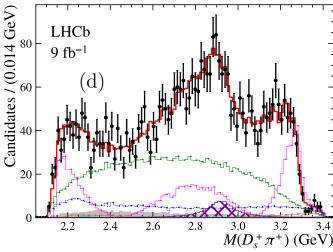
- Since the problem seems to be in the $D_s^+\pi$ projections
 - Try adding one state per decay mode
 - No relation between them assumed
 - Float mass, width and spin
- Both data sets prefer a spin-0 resonance at $2900 \,\mathrm{MeV}/c^2$


- Perform a simultaneous fit
 - Assuming isospin symmetry to relate the two states


$$T_{c\bar{s}0}^a(2900)^0: M = (2.892 \pm 0.014 \pm 0.015) \text{ GeV},$$

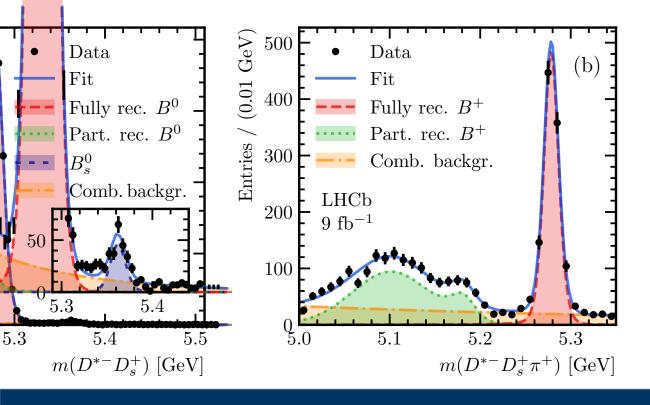
 $\Gamma = (0.119 \pm 0.026 \pm 0.013) \text{ GeV},$

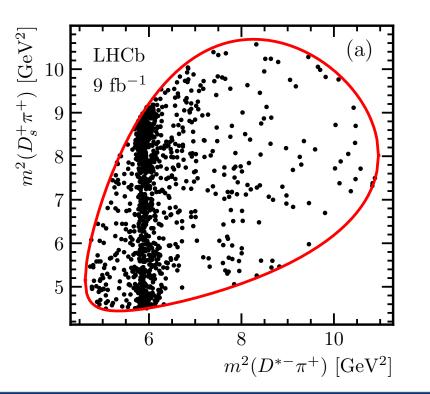

Observed with 8σ significance

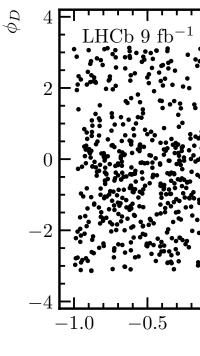

$$T_{c\bar{s}0}^a(2900)^{++}: M = (2.921 \pm 0.017 \pm 0.020) \text{ GeV},$$

 $\Gamma = (0.137 \pm 0.032 \pm 0.017) \text{ GeV},$

Observed with 6.5σ significance

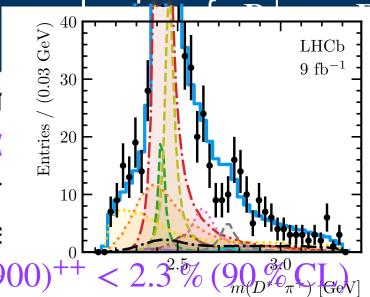


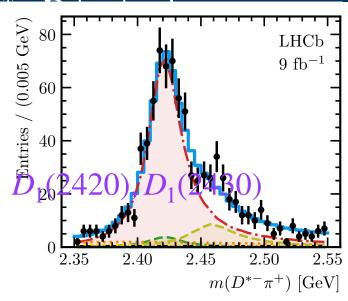


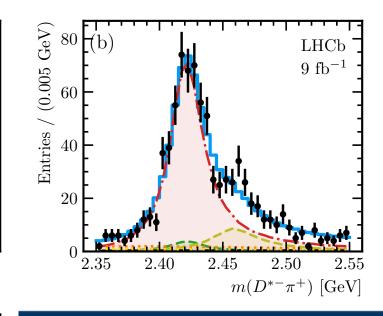


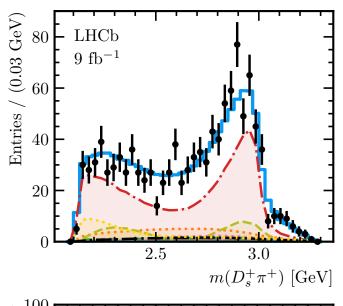
Amplitude analysis of $B^+ \to D^{*-}D_s^+\pi^+$ decays

- Very recent paper from LHCb
 - Do we see the $T_{c\bar{s}0}(2900)^{++}$ state?
 - About 850 events in the signal region, analysis strategy ~as before

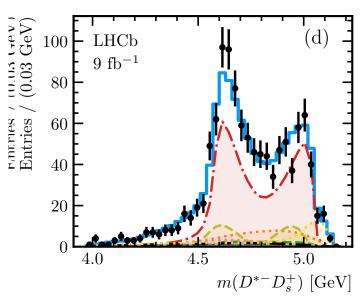







Amplitude

- Very recent paper from
 - Do we see the $T_{c\bar{s}0}(290)$
 - Region of interest dom
 - No evidence for the te
 - Fit fraction for $T_{c\bar{s}0}(2900)^{+1}$



LHCb

 9 fb^{-1}

 0.31^{2}

LHCb

 9 fb^{-1}

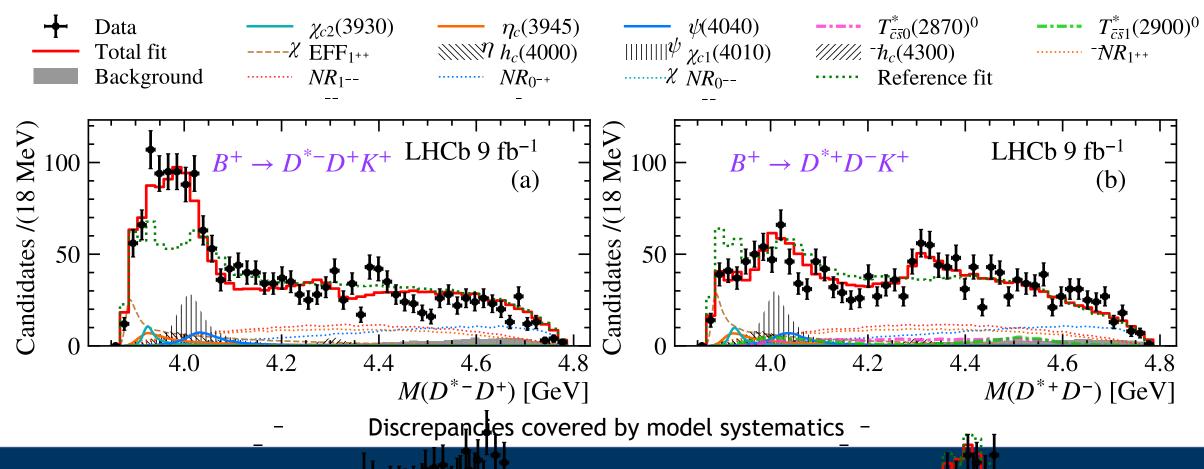
- Brief introduction
- Reminder of the LHCb experiment
- Recent results from LHCb
 - Amplitude analysis of $B^0 o \overline D^0 D_s^+ \pi^-$ and $B^+ o D^- D_s^+ \pi^+$ decays
 - Quick look at a new result from $B^+ \to D^{*-}D_s^+\pi^+$
 - Study of $B^+ \rightarrow D^{*\pm}D^{\mp}K^+$ decays
 - Radiative decays of $\chi_{c1}(3872)$
- Future prospects

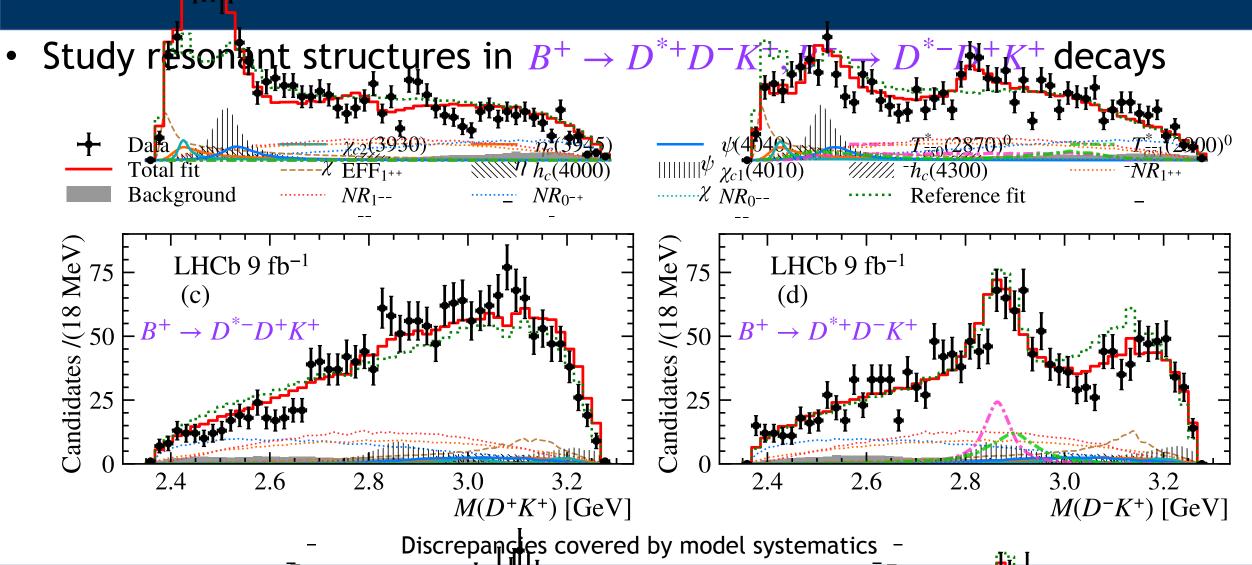
03/07/2024

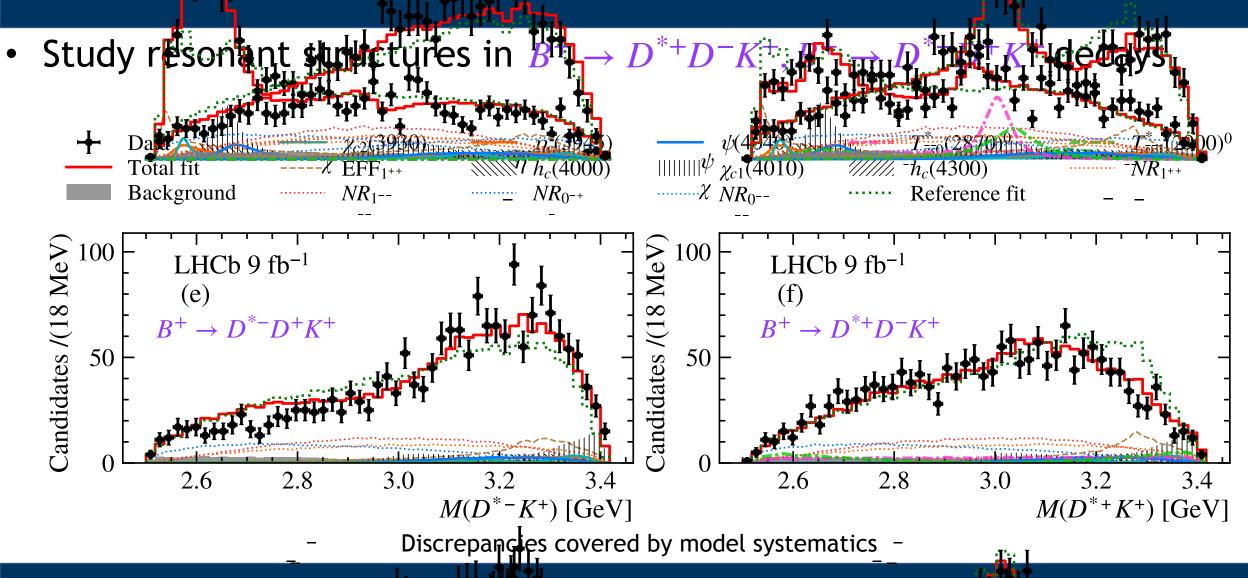
- Study resonant structures in $B^+ \to D^{*+}D^-K^+, B^+ \to D^{*-}D^+K^+$ decays
 - Again motivated by tetraquark observations in $B^+ \to D^+ D^- K^+$ decays
 - Interest to study this family of tetraquarks further!
- Simultaneous analysis of the two final states
 - Expect charmonium(-like) contributions to be equal in both (C conservation)
- Use the full Run 1 + Run 2 data sample from LHCb
 - Find 1636 ± 43 decays in $B^+ \rightarrow D^{*+}D^-K^+$ sample
 - Find 1772 ± 44 decays in $B^+ \rightarrow D^{*-}D^+K^+$ sample
 - Purity in both modes around 95%

- Study resonant structures in $B^+ \to D^{*+}D^-K^+, B^+ \to D^{*-}D^+K^+$ decays
 - Baseline model
 - Lots to discuss!

Component	$J^{P(C)}$	Fit fraction [%]	Fit fraction [%]	Branching fraction
Component	$J \leftarrow \gamma$	$B^+ \to D^{*+}D^-K^+$	$B^+ \to D^{*-}D^+K^+$	$[10^{-4}]$
EFF_{1++}	1++	$10.9 {}^{+2.3}_{-1.2} {}^{+1.6}_{-2.1}$	$9.9^{+2.1}_{-1.0}{}^{+1.4}_{-1.9}$	$0.74^{+0.16}_{-0.08}^{+0.11}_{-0.14} \pm 0.07$
$\eta_c(3945)$	0_{-+}	$3.4^{+0.5}_{-1.0}{}^{+1.9}_{-0.7}$	$3.1^{+0.5}_{-0.9}^{+1.7}_{-0.6}$	$0.23^{+0.04}_{-0.07}^{+0.13}_{-0.05}^{\pm}$
$\chi_{c2}(3930)^{\dagger}$	2^{++}	$1.8^{+0.5}_{-0.4}{}^{+0.6}_{-1.2}$	$1.7^{+0.5}_{-0.4}{}^{+0.6}_{-1.1}$	$0.12^{+0.03}_{-0.03}^{+0.04}_{-0.08} \pm 0.01$
$h_c(4000)$	1+-	$5.1^{+1.0}_{-0.8}{}^{+1.5}_{-0.8}$	$4.6^{+0.9}_{-0.7}{}^{+1.4}_{-0.7}$	$0.35^{+0.07}_{-0.05}^{+0.10}_{-0.05} \pm 0.03$
$\chi_{c1}(4010)$	1++	$10.1 {}^{+1.6}_{-0.9} {}^{+1.3}_{-1.6}$	$9.1^{+1.4}_{-0.8}{}^{+1.2}_{-1.4}$	$0.69^{+0.11}_{-0.06}^{+0.09}_{-0.11}^{+0.09}_{\pm}$
$\psi(4040)^{\dagger}$	1	$2.8^{+0.5}_{-0.4}{}^{+0.5}_{-0.5}$	$2.6^{+0.5}_{-0.4}{}^{+0.4}_{-0.5}$	$0.19^{+0.04}_{-0.03}^{+0.03}_{-0.03}^{+0.03} \pm 0.02$
$h_c(4300)$	1+-	$1.2^{+0.2}_{-0.5}{}^{+0.2}_{-0.2}$	$1.1^{+0.2}_{-0.5}{}^{+0.2}_{-0.2}$	$0.08^{+0.01}_{-0.03}^{+0.02}_{-0.01} \pm 0.01$
$T^*_{\bar{c}\bar{s}0}(2870)^{0}$ †	0_{+}	$6.5^{+0.9}_{-1.2}{}^{+1.3}_{-1.6}$	_	$0.45^{+0.06}_{-0.08}^{+0.09}_{-0.10} \pm 0.04$
$T^*_{\bar{c}\bar{s}1}(2900)^{0 \; \dagger}$	1-	$5.5^{+1.1}_{-1.5}{}^{+2.4}_{-1.6}$	_	$0.38^{+0.07}_{-0.10}^{+0.16}_{-0.11} \pm 0.03$
$NR_{1^{}}(D^{*\mp}D^{\pm})$	1	$20.4 \substack{+2.3 \ -2.6 \\ -0.6 \ -2.6}$	$18.5^{+2.1}_{-0.5}{}^{+1.9}_{-2.3}$	$1.39^{+0.16}_{-0.04}{}^{+0.14}_{-0.17}\pm0.12$
$NR_{0^{}}(D^{*\mp}D^{\pm})$	0	$1.2^{+0.6}_{-0.1}{}^{+0.7}_{-0.6}$	$1.1^{+0.6}_{-0.1}^{+0.6}_{-0.5}$	$0.08^{+0.04}_{-0.01}^{+0.05}_{-0.04}^{\pm}0.01$
$NR_{1^{++}}(D^{*\mp}D^{\pm})$	1++	$17.8^{+1.9}_{-1.4}{}^{+3.6}_{-2.6}$	$16.1^{+1.7}_{-1.3}{}^{+3.3}_{-2.3}$	$1.21^{+0.13}_{-0.10}{}^{+0.24}_{-0.17}\pm0.11$
$NR_{0^{-+}}(D^{*\mp}D^{\pm})$	0-+	$15.9^{+3.3}_{-1.2}{}^{+3.3}_{-3.3}$	$14.5^{+3.0}_{-1.1}{}^{+3.0}_{-3.0}$	$1.09^{+0.23}_{-0.08}^{+0.22}_{-0.23}^{+0.22}_{-0.09}$


- Study resonant structures in $B^+ \to D^{*+}D^-K^+, B^+ \to D^{*-}D^+K^+$ decays
 - Baseline model
 - Lots to discuss!
 - New charmonium(-like) states


Component	$J^{P(C)}$	Fit fraction [%]	Fit fraction [%]	Branching fraction
Component	J	$B^+ \to D^{*+}D^-K^+$	$B^+ \to D^{*-}D^+K^+$	$[10^{-4}]$
$\mathrm{EFF}_{1^{++}}$	1++	$10.9 {}^{+2.3}_{-1.2} {}^{+1.6}_{-2.1}$	$9.9^{+2.1}_{-1.0}{}^{+1.4}_{-1.9}$	$0.74^{+0.16}_{-0.08}{}^{+0.11}_{-0.14}\pm0.07$
$\eta_c(3945)$	0_{-+}	$3.4^{+0.5}_{-1.0}{}^{+1.9}_{-0.7}$	$3.1^{+0.5}_{-0.9}^{+1.7}_{-0.6}$	$0.23^{+0.04}_{-0.07}{}^{+0.13}_{-0.05} \pm 0.02$
$\chi_{c2}(3930)^{\dagger}$	2^{++}	$1.8^{+0.5}_{-0.4}{}^{+0.6}_{-1.2}$	$1.7^{+0.5}_{-0.4}{}^{+0.6}_{-1.1}$	$0.12^{+0.03}_{-0.03}^{+0.04}_{-0.08} \pm 0.01$
$h_c(4000)$	1+-	$5.1^{+1.0}_{-0.8}{}^{+1.5}_{-0.8}$	$4.6^{+0.9}_{-0.7}{}^{+1.4}_{-0.7}$	$0.35^{+0.07}_{-0.05}^{+0.10}_{-0.05} \pm 0.03$
$\chi_{c1}(4010)$	1++	$10.1 {}^{+1.6}_{-0.9} {}^{+1.3}_{-1.6}$	$9.1^{+1.4}_{-0.8}{}^{+1.2}_{-1.4}$	$0.69^{+0.11}_{-0.06}^{+0.11}_{-0.11}^{+0.09}_{\pm}$
$\psi(4040)^{\dagger}$	1	$2.8^{+0.5}_{-0.4}{}^{+0.5}_{-0.5}$	$2.6^{+0.5}_{-0.4}{}^{+0.4}_{-0.5}$	$0.19^{+0.04}_{-0.03}^{+0.03}_{-0.03} \pm 0.02$
$h_c(4300)$	1+-	$1.2^{+0.2}_{-0.5}{}^{+0.2}_{-0.2}$	$1.1^{+0.2}_{-0.5}{}^{+0.2}_{-0.2}$	$0.08^{+0.01}_{-0.03}^{+0.02}_{-0.01} \pm 0.01$
$T^*_{\overline{c}\overline{s}0}(2870)^0$ †	0+	$6.5^{+0.9}_{-1.2}{}^{+1.3}_{-1.6}$	_	$0.45^{+0.06}_{-0.08}^{+0.09}_{-0.10} \pm 0.04$
$T_{\bar{c}\bar{s}1}^*(2900)^{0 \dagger}$	1-	$5.5^{+1.1}_{-1.5}{}^{+2.4}_{-1.6}$	_	$0.38^{+0.07}_{-0.10}^{+0.16}_{-0.11} \pm 0.03$
$NR_{1^{}}(D^{*\mp}D^{\pm})$	1	$20.4 \substack{+2.3 \\ -0.6} \substack{+2.1 \\ -2.6}$	$18.5 {}^{+2.1}_{-0.5} {}^{+1.9}_{-2.3}$	$1.39_{-0.04-0.17}^{+0.16+0.14} \pm 0.12$
$NR_{0^{}}(D^{*\mp}D^{\pm})$	0	$1.2^{+0.6}_{-0.1}{}^{+0.7}_{-0.6}$	$1.1^{+0.6}_{-0.1}{}^{+0.6}_{-0.5}$	$0.08^{+0.04}_{-0.01}{}^{+0.05}_{-0.04} \pm 0.01$
$NR_{1^{++}}(D^{*\mp}D^{\pm})$	1++	$17.8^{+1.9}_{-1.4}{}^{+3.6}_{-2.6}$	$16.1^{+1.7}_{-1.3}{}^{+3.3}_{-2.3}$	$1.21^{+0.13}_{-0.10}{}^{+0.24}_{-0.17}\pm0.11$
$NR_{0^{-+}}(D^{*\mp}D^{\pm})$	0-+	$15.9^{+3.3}_{-1.2}{}^{+3.3}_{-3.3}$	$14.5^{+3.0}_{-1.1}{}^{+3.0}_{-3.0}$	$1.09^{+0.23}_{-0.08}{}^{+0.22}_{-0.23}\pm0.09$

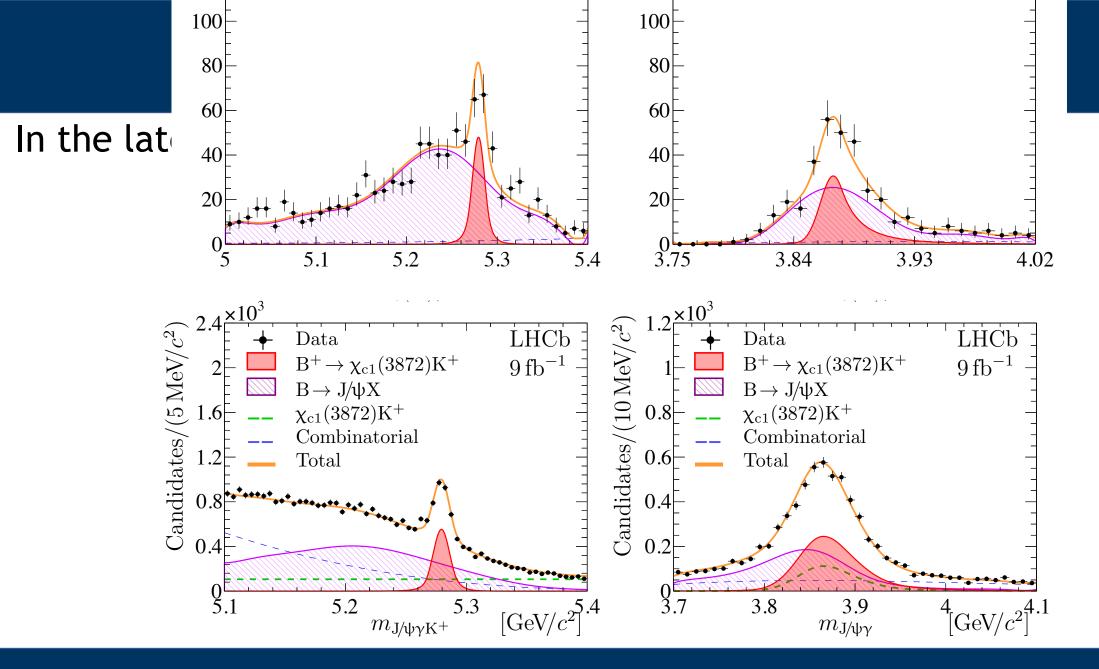

- Study resonant structures in $B^+ \to D^{*+}D^-K^+, B^+ \to D^{*-}D^+K^+$ decays
 - Baseline model
 - Lots to discuss!
 - New charmonium(-like) states
 - Tetraquarks seen in one channel
 - $T_{c\bar{s}0}(2870)^0$ forbidden in $B^+ \to D^{*-}D^+K^+$ and the spin-1 state not seen

	D(C)	Fit fraction [%]	Fit fraction [%]	Branching fraction
Component	$J^{P(C)}$	$B^+ \to D^{*+}D^-K^+$	$B^+ \to D^{*-}D^+K^+$	$[10^{-4}]$
$\overline{\rm EFF_{1^{++}}}$	1++	$10.9^{+2.3}_{-1.2}{}^{+1.6}_{-2.1}$	$9.9^{+2.1}_{-1.0}{}^{+1.4}_{-1.9}$	$0.74^{+0.16}_{-0.08}{}^{+0.11}_{-0.14} \pm 0.07$
$\eta_c(3945)$	0_{-+}	$3.4^{+0.5}_{-1.0}{}^{+1.9}_{-0.7}$	$3.1{}^{+0.5}_{-0.9}{}^{+1.7}_{-0.6}$	$0.23^{+0.04}_{-0.07}^{+0.13}_{-0.05} \pm 0.02$
$\chi_{c2}(3930)^{\dagger}$	2^{++}	$1.8^{+0.5}_{-0.4}{}^{+0.6}_{-1.2}$	$1.7^{+0.5}_{-0.4}{}^{+0.6}_{-1.1}$	$0.12^{+0.03}_{-0.03}{}^{+0.04}_{-0.08}\pm0.01$
$h_c(4000)$	1+-	$5.1^{+1.0}_{-0.8}{}^{+1.5}_{-0.8}$	$4.6^{+0.9}_{-0.7}{}^{+1.4}_{-0.7}$	$0.35^{+0.07}_{-0.05}^{+0.10}_{-0.05} \pm 0.03$
$\chi_{c1}(4010)$	1++	$10.1 {}^{+1.6}_{-0.9} {}^{+1.3}_{-1.6}$	$9.1^{+1.4}_{-0.8}{}^{+1.2}_{-1.4}$	$0.69^{+0.11}_{-0.06}^{+0.09}_{-0.11}^{+0.09}_{\pm}0.06$
$\psi(4040)^{\dagger}$	1	$2.8^{+0.5}_{-0.4}{}^{+0.5}_{-0.5}$	$2.6^{+0.5}_{-0.4}{}^{+0.4}_{-0.5}$	$0.19^{+0.04}_{-0.03}^{+0.03}\pm0.02$
$h_c(4300)$	1+-	$1.2^{+0.2+0.2}_{-0.5-0.2}$	$1.1^{+0.2}_{-0.5}^{+0.2}_{-0.2}$	$0.08^{+0.01}_{-0.03}^{+0.02}_{-0.01} \pm 0.01$
$T^*_{\bar{c}\bar{s}0}(2870)^{0.7}$	0_{+}	$6.5^{+0.9+1.3}_{-1.2-1.6}$	-	$0.45^{+0.06}_{-0.08}^{+0.09}_{-0.10} \pm 0.04$
$T_{\bar{c}\bar{s}1}^*(2900)^{0 \dagger}$	1-	$5.5^{+1.1}_{-1.5}{}^{+2.4}_{-1.6}$	_	$0.38^{+0.07}_{-0.10}^{+0.16}_{-0.11} \pm 0.03$
$NR_{1}-(D^{*+}D^{\pm})$	1	$20.4^{+3.3}_{-0.6}{}^{+2.1}_{-2.6}$	$18.5^{+2.1}_{-0.5}^{+1.9}_{-2.3}$	$1.39^{+0.16}_{-0.04}{}^{+0.14}_{-0.17}\pm0.12$
$NR_{0^{}}(D^{*\mp}D^{\pm})$	0	$1.2^{+0.6}_{-0.1}{}^{+0.7}_{-0.6}$	$1.1^{+0.6}_{-0.1}^{+0.6}_{-0.5}$	$0.08^{+0.04}_{-0.01}^{+0.05}_{-0.04} \pm 0.01$
$NR_{1^{++}}(D^{*\mp}D^{\pm})$	1++	$17.8^{+1.9}_{-1.4}{}^{+3.6}_{-2.6}$	$16.1^{+1.7}_{-1.3}{}^{+3.3}_{-2.3}$	$1.21^{+0.13}_{-0.10}{}^{+0.24}_{-0.17} \pm 0.11$
$NR_{0^{-+}}(D^{*\mp}D^{\pm})$	0-+	$15.9^{+3.3}_{-1.2}{}^{+3.3}_{-3.3}$	$14.5^{+3.0}_{-1.1}{}^{+3.0}_{-3.0}$	$1.09^{+0.23}_{-0.08}{}^{+0.22}_{-0.23}\pm0.09$

• Study resonant structures in $B^+ \to D^{*+}D^-K^+, B^+ \to D^{*-}D^+K^+$ decays

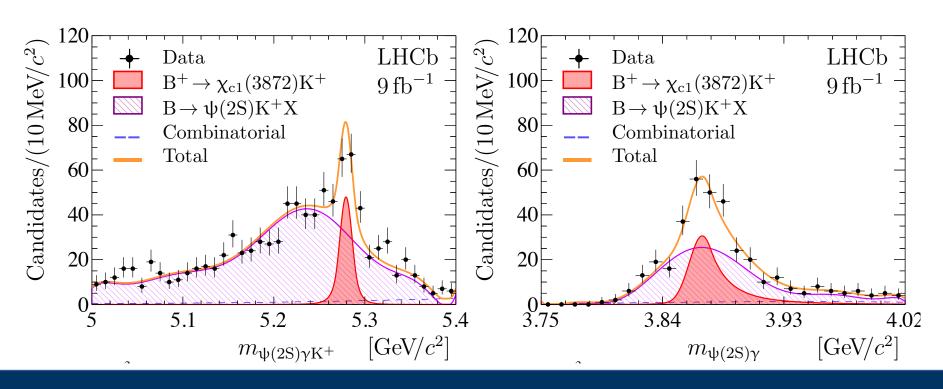
- Study resonant structures in $B^+ \to D^{*+}D^-K^+, B^+ \to D^{*-}D^+K^+$ decays
 - Tetraquark candidates in fair agreement with previous results
 - Seems to be a difference in the ratio of the two states in this final state

Property	This work	Previous worl	K
$T_{\bar{c}\bar{s}0}^*(2870)^0 \text{ mass [MeV]}$	$2914 \pm 11 \pm 15$	2866 ± 7	 11_
$T_{\bar{c}\bar{s}0}^*(2870)^0$ width [MeV]	$128 \pm 22 \pm 23$	57 ± 13	11σ
$T_{\bar{c}\bar{s}1}^*(2900)^0 \text{ mass [MeV]}$	$2887 \pm 8 \pm 6$	2904 ± 5	0.1
$T_{\bar{c}\bar{s}1}^*(2900)^0$ width [MeV]	$92 \pm 16 \pm 16$	110 ± 12	9.10
$\mathcal{B}(B^+ \to T^*_{\bar{c}\bar{s}0}(2870)^0 D^{(*)+})$	$(4.5^{+0.6}_{-0.8}{}^{+0.9}_{-1.0}\pm0.4)\times10^{-5}$	$(1.2 \pm 0.5) \times 10$	$)^{-5}$
$\mathcal{B}(B^+ \to T^*_{\bar{c}\bar{s}1}(2900)^0 D^{(*)+})$	$(3.8^{+0.7+1.6}_{-1.0-1.1}\pm0.3)\times10^{-5}$	$(6.7 \pm 2.3) \times 10^{-2}$	$)^{-5}$
$\frac{\mathcal{B}(B^+ \to T^*_{\bar{c}\bar{s}0}(2870)^0 D^{(*)+})}{\mathcal{B}(B^+ \to T^*_{\bar{c}\bar{s}1}(2900)^0 D^{(*)+})}$	$1.17 \pm 0.31 \pm 0.48$	0.18 ± 0.05	


	$\eta_c(3945)$	$h_c(4000)$	$\chi_{c1}(4010)$	and $h_c(4300)$
Consistent with X(3940) seen by Belle	10σ	9.1σ	16σ	6.4σ
	0-+	1+-	1++	1+-

- Brief introduction
- Reminder of the LHCb experiment
- Recent results from LHCb
 - Amplitude analysis of $B^0 o \overline D^0 D_s^+ \pi^-$ and $B^+ o D^- D_s^+ \pi^+$ decays
 - Quick look at a new result from $B^+ \to D^{*-}D_s^+\pi^+$
 - Study of $B^+ \to D^{*\pm}D^{\mp}K^+$ decays
 - Radiative decays of $\chi_{c1}(3872)$
- Future prospects

- Try to learn more about this famous state by studying these decay modes
 - Aim to measure the ratio of branching fractions


$$\mathcal{R}_{\psi\gamma} = \frac{\Gamma(\chi_{c1}(3872) \to \psi(2S)\gamma)}{\Gamma(\chi_{c1}(3872) \to J/\psi\gamma)}$$

- Predictions vary strongly depending on the nature of the $\chi_{c1}(3872)$ state
- Experimental history
 - BaBar measured $\mathcal{R}_{wy} = 3.4 \pm 1.4$
 - LHCb measured $\mathcal{R}_{\psi\gamma} = 2.46 \pm 0.64 \pm 0.29$
 - Belle and BESIII found no significant signal for $\chi_{c1}(3872) \rightarrow \psi(2S)\gamma$

In the latest LHCb measurement we determine

$$\mathcal{R}_{\psi\gamma} = \frac{\Gamma(B^{+} \to [\chi_{c1}(3872) \to \psi(2S)\gamma]K^{+})}{\Gamma(B^{+} \to [\chi_{c1}(3872) \to J/\psi\gamma]K^{+})}$$

Summary of yield from the mass fits

Danamatan		Data-tak	ing period	
Parameter		Run 1	Run 2	
$\psi(2S)$	γK^+	5.3σ	6.7σ	Stat only
$N_{\mathrm{B}^{+}\to(\chi_{c1}(3872)\to\psi(2\mathrm{S})\gamma)\mathrm{K}^{-}}$	+	40 ± 8	63 ± 10	
$N_{\mathrm{B} \to \psi(2\mathrm{S})\mathrm{K}^+\mathrm{X}}$		567 ± 24	885 ± 29	
$N_{ m comb}$		55 ± 17	132 ± 19	
J/ψγ	K^+			
$N_{\mathrm{B}^{+}\to(\chi_{\mathrm{c}1}(3872)\to\mathrm{J/\psi\gamma})\mathrm{K}^{+}}$	$[10^3]$	0.43 ± 0.03	1.69 ± 0.05	
$N_{\mathrm{B} o \mathrm{J}/\psi \mathrm{X}}$	$[10^3]$	3.61 ± 0.11	18.72 ± 0.26	
$N_{\rm \chi_{c1}(3872)K^+}$	$[10^3]$	1.18 ± 0.06	5.53 ± 0.23	
$N_{ m comb}$	$[10^3]$	4.05 ± 0.11	17.46 ± 0.21	

Summary of results by year

$$\mathcal{R}_{\psi\gamma}^{\text{Run 1}} = 2.50 \pm 0.52^{+0.20}_{-0.23} \pm 0.06$$

 $\mathcal{R}_{\psi\gamma}^{\text{Run 2}} = 1.49 \pm 0.23^{+0.13}_{-0.12} \pm 0.03$

Averaged (BLUE method) to give

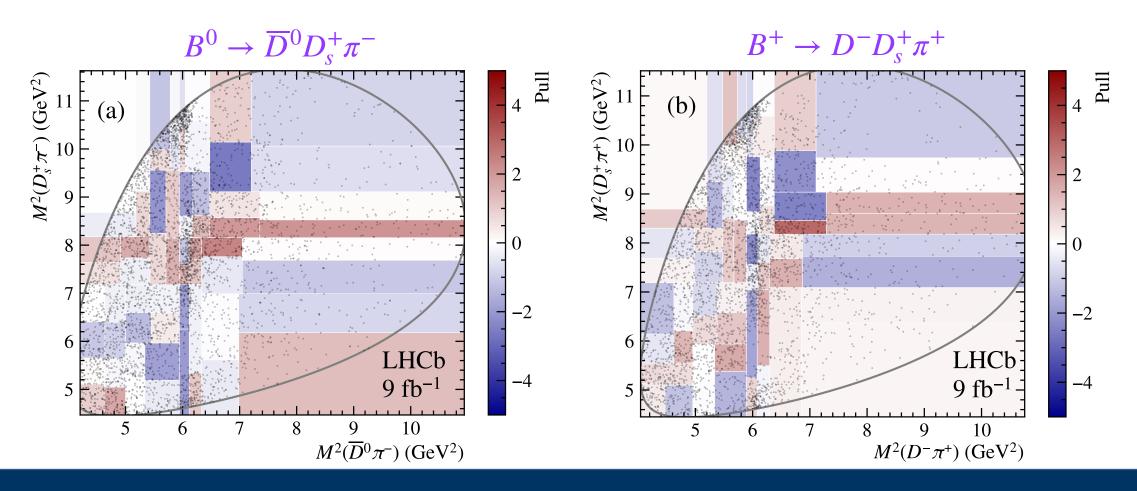
$$\mathcal{R}_{\psi\gamma} = 1.67 \pm 0.21 \pm 0.12 \pm 0.04$$

- Inconsistent with an upper limit from BESIII
- Inconsistent with many predictions using DD* molecular models

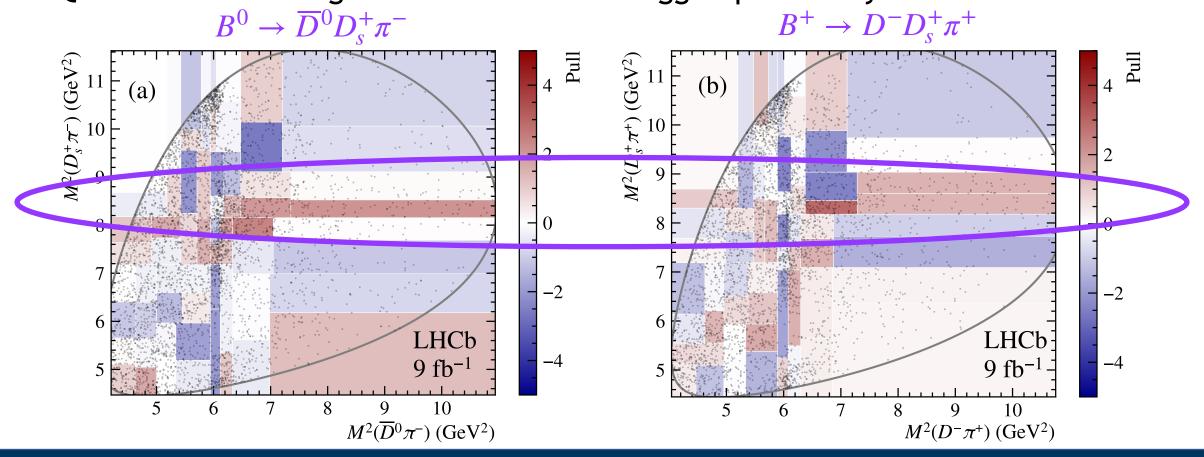
Summary

- Exciting time in spectroscopy (again)
 - Huge number of recent observations
 - Challenge remains to understand them
- Looking forward to cracking open the Run 3 data sample!
 - Expecting to collect roughly the Run 1 + Run 2 sample per year
 - Early indications show the factor of two gain in hadronic final states from the new software only trigger seems realistic

35/07/2024


Back up

03/07/2024 36


Decay	Parameter	Run 1	Run 2
	Signal yield	587 ± 27	2641 ± 57
$B^0 o \overline{D}_{K\pi}^0 D_s^+ \pi^-$	B_s^0 signal	25.3 ± 8.3	77 ± 15
	Background yield	421 ± 26	1440 ± 49
	Mean (MeV)	5279.12 ± 0.38	5279.16 ± 0.18
	Width (MeV)	7.89 ± 0.35	7.73 ± 0.17
	Exponential slope	$-(3.08 \pm 0.52) \times 10^{-3}$	$-(2.98 \pm 0.29) \times 10^{-3}$
	Signal yield	185 ± 15	759 ± 32
$B^0 o \overline{D}_{K3\pi}^0 D_s^+ \pi^-$	B_s^0 signal	4.9 ± 4.6	38 ± 11
	Background yield	136 ± 14	692 ± 33
	Mean (MeV)	5277.98 ± 0.70	5278.79 ± 0.34
	Width (MeV)	8.01 ± 0.59	7.72 ± 0.33
	Exponential slope	$-(2.56 \pm 0.90) \times 10^{-3}$	$-(3.03 \pm 0.41) \times 10^{-3}$
	Signal yield	798 ± 30	3123 ± 59
$B^+ o D^- D_s^+ \pi^+$	Background yield	311 ± 21	1201 ± 40
	Mean (MeV)	5278.88 ± 0.33	5278.74 ± 0.16
	Width (MeV)	8.08 ± 0.30	8.05 ± 0.14
	Exponential slope	$-(0.82 \pm 0.61) \times 10^{-3}$	$-(0.90 \pm 0.31) \times 10^{-3}$

03/07/2024 37

Have a look at the fit quality

- Have a look at the fit quality
 - Quite a bit of strong colour in the area flagged previously

• Study resonant structures in $B^+ \to D^{*+}D^-K^+, B^+ \to D^{*-}D^+K^+$ decays

This work		Known states [6]		$c\bar{c}$ prediction [34]	
	$J^{PC} = 0^{-+}$	X(3940) [9,10]	$J^{PC} = ?^{??}$	$\eta_c(3S) J^{PC} = 0^{-+}$	
$m_0 = 3945 {}^{+28}_{-17} {}^{+37}_{-28}$	$\Gamma_0 = 130^{+92+101}_{-49-70}$	$m_0 = 3942 \pm 9$	$\Gamma_0 = 37 {}^{+27}_{-17}$	$m_0 = 4064 \Gamma_0 = 80$	
$h_c(4000)$	$J^{PC} = 1^{+-}$	$T_{c\bar{c}}(4020)^0$ [35]	$J^{PC} = ?$?	$h_c(2P) J^{PC} = 1^{+-}$	
$m_0 = 4000 {}^{+17}_{-14} {}^{+29}_{-22}$	$\Gamma_0 = 184^{+71}_{-45}^{+97}_{-61}$	$m_0 = 4025.5^{+2.0}_{-4.7} \pm 3.1$	$\Gamma_0 = 23.0 \pm 6.0 \pm 1.0$	$m_0 = 3956 \Gamma_0 = 87$	
$\chi_{c1}(4010)$	$J^{PC} = 1^{++}$			$\chi_{c1}(2P)$ $J^{PC} = 1^{++}$	
$m_0 = 4012.5 {}^{+3.6}_{-3.9} {}^{+4.1}_{-3.7}$	$\Gamma_0 = 62.7^{+7.0}_{-6.4}{}^{+6.4}_{-6.6}$			$m_0 = 3953 \Gamma_0 = 165$	
$h_c(4300)$	$J^{PC} = 1^{+-}$			$h_c(3P) J^{PC} = 1^{+-}$	
$m_0 = 4307.3^{+6.4}_{-6.6}{}^{+3.3}_{-4.1}$	$\Gamma_0 = 58^{+28+28}_{-16-25}$			$m_0 = 4318 \Gamma_0 = 75$	
		$\chi_c(4274) [36]$	$J^{PC} = 1^{++}$	$\chi_{c1}(3P)$ $J^{PC} = 1^{++}$	
		$m_0 = 4294 \pm 4 {}^{+6}_{-3}$	$\Gamma_0 = 53 \pm 5 \pm 5$	$m_0 = 4317 \Gamma_0 = 39$	
		<u> </u>			

$$\eta_c(3945), h_c(4000), \chi_{c1}(4010) \text{ and } h_c(4300)$$

$$10\sigma$$
 9.1σ 16σ 6.4σ 0^{-+} 1^{+-} 1^{+-}

Looking forwards - my two cents

- We need to understand the structure of exotic particles
 - With four and five quark states, how are the quarks arranged?
- Discovering them pseudo-randomly is a good start...
 - Perhaps it is time for a more focused, systematic, approach
 - Focus on related states and look for any more possible partners e.g.

$$T_{cs0}(2900)^{0}$$
 $T_{c\bar{s}0}^{a}(2900)^{0}$ $c\bar{s}\bar{u}d$ $T_{cs1}(2900)^{0}$ $T_{c\bar{s}0}^{a}(2900)^{++}$ $c\bar{s}u\bar{d}$

Make sure we focus equally on final states they do not decay to

03/07/2024

Looking forwards - my two cents

- We need to understand the structure of exotic particles
 - With four and five quark states, how are the quarks arranged?
- Discovering them pseudo-randomly is a good start...
 - Perh Focu The $T^{\theta}_{\psi s1}(4X00)$ family could be another starting point $T_{cs1}(2900)^0$ $T^a_{c\bar{s}0}(2900)^{++}$ $c\bar{s}u\bar{d}$
- Make sure we focus equally on final states they do not decay to

03/07/2024