Exotic Hadrons at BESIII

Meike Küßner - on behalf of the BESIII Collaboration

Exotic Hadron Spectroscopy 2024 - Swansea

2nd of July 2024

BESI

Meike Küßner Exotic Hadron Spectroscopy 2024 - Swansea

Fundamental Questions

2

The Higgs mechanism creates the mass of the fundamental particles, but this is not the end of the story!

We even do not understand "conventional" matter like the proton!

From the Perspective of Meson Spectroscopy

- The mass of hadrons is predominantly generated by strong interaction (>90% in case of the proton)
- To understand how mass is generated we investigate other systems, e.g. with explicit gluonic degrees of freedom

• For a fermion-antifermion system not all quantum numbers can be formed

$$P = (-1)^{L+1}$$
, $C = (-1)^{L+S}$

- Exotic quantum numbers: $J^{PC} = 0^{+-}, 0^{--}, 1^{-+}, 2^{+-}, \dots$
- But: Further states have been found which show odd properties or even exotic quantum numbers!

3

Light Meson Regime

- Light meson regime is extremely populated!
- Several (broad) interfering resonances of the same q.n.
- Various inelastic channels and thresholds opening
- Identifying and measuring resonance properties is not straight forward
- Resonances not always look like peaks
 Peaks not necessarily caused by a resonance
- Analysing a single channel is not enough to disentangle states unambiguously
- More sophisticated tools and descriptions needed!

spectrum of well established states

We should start thinking beyond experimental collaborations!

Experimental Possibilities

- Each experiment, detector and process has its own advantages
- To tackle these challenges, we need to combine forces

Meike Küßner Exotic Hadron Spectroscopy 2024 - Swansea

BESIII at BEPCII

- Symmetric e^+e^- collider in Beijing
- Update of BEPC accelerator
 - 2004: construction started
 - 2008: first collisions
 - 2009-today: BESIII physic runs
- Center of mass energy range: $\sqrt{s} = 2 4.9 \text{ GeV}$
- Single beam current: 0.91 A
- Design luminosity: 1 · 10³³ cm⁻² s⁻¹
- Achieved luminosity: 1.01 · 10³³ cm⁻² s⁻¹

BESIII at BEPCII

- Symmetric e^+e^- collider in Beijing
- Update of BEPC accelerator
 - 2004: construction started
 - 2008: first collisions
 - 2009-today: BESIII physic runs
- Center of mass energy range: $\sqrt{s} = 2 4.9 \text{ GeV}$
- Single beam current: 0.91 A
- Design luminosity: 1 · 10³³ cm⁻² s⁻¹
- Achieved luminosity: 1.01 · 10³³ cm⁻² s⁻¹

Meike Küßner

Learning More About the Inner Structure

Two photon physics

- Clean e.m. process, only sensitive to charge
- Complementary information on glueball candidates!
- States with even C-parity $0^{\pm +}, 2^{\pm +}, \ldots$ can be directly produced

Untagged reactions:

- Scattering angles of electron and positron are small and are not detectable
- Quasi real photons carrying small virtuality
 spin 1 strongly suppressed

Coupled Channel Analysis of Two-Photon Data

- K-matrix parameterisation (EPJ C (2021) 81, 1056) fixing all pole parameters on decay side
- Determination of two-photon width based on pole residue (even for f_0 wave)

Coupled Channel Analysis of pp and COMPASS Data

name	relevant data	Breit-Wigner mass [MeV/c ²]	Breit-Wigner width Γ [MeV]			
$K^{*}(892)^{\pm}$	$\bar{p}p$	$893.8 \pm 1.0 \pm 0.8$	$56.3 \pm 2.0 \pm 1.0$			
<i>φ</i> (1020)	<i>̄</i> ₽ <i>p</i>	$1018.4 \pm 0.5 \pm 0.2$	4.2 (fixed)			
name	relevant data	pole mass $[MeV/c^2]$	pole width Γ [MeV]			
$f_0(980)^{++}$	scat	$977.8 \pm 0.6 \pm 1.4$	98.8 ± 6.6± 11.2			
$f_0(980)^{+++}$	scat	$992.6 \pm 0.3 \pm 0.5$	$61.2 \pm 1.2 \pm 1.7$			
$f_0(1370)$	scat	$1281 \pm 11 \pm 26$	$410 \pm 12 \pm 50$		Sa	voral ra
$f_0(1500)$	$\bar{p}p + \text{scat}$	$1511.0 \pm 8.5 \substack{+3.5 \\ -14.0}$	$81.1 \pm 4.5 \substack{+26.9 \\ -0.5}$		Se	veralite
$f_0(1710)$	$\bar{p}p + \text{scat}$	$1794.3 \pm 6.1 \substack{+47.0 \\ -61.2}$	$281 \pm 32 {}^{+12}_{-80}$			simu
<i>f</i> ₂ (1810)	scat	$1769 \pm 26^{+3}_{-26}$	$201 \pm 57 {+13 \atop -87}$			
$f_2(X)$	scat	$2119.9 \pm 6.4 \substack{+25.7 \\ -1.1}$	$343 \pm 11 \stackrel{+32}{_{-11}}$			
name	relevant data	pole mass $[MeV/c^2]$	pole width Γ [MeV]	$\Gamma_{\pi\eta^\prime}/\Gamma_{\pi\eta}$ [%]	Th	is para
π_1	$\bar{p}p + \pi p$	$1623 \pm 47 {}^{+24}_{-75}$	$455 \pm 88 {}^{+144}_{-175}$	$554 \pm 110 \ ^{+180}_{-27}$		Can be
name	relevant data	pole mass [MeV/c ²]	pole width Γ [MeV]	$\Gamma_{KK}/\Gamma_{\pi\eta}$ [%]		
$a_0(980)^{}$	<i>̄</i> ₽ <i>p</i>	$1002.7 \pm 8.8 \pm 4.2$	$132 \pm 11 \pm 8$	$14.8 \pm 7.1 \pm 3.6$		
$a_0(980)^{-+}$	$\bar{p}p$	$1003.3 \pm 8.0 \pm 3.7$	$101.1 \pm 7.2 \pm 3.0$	$13.5 \pm 6.2 \pm 3.1$		
<i>a</i> ₀ (1450)	<i>₽p</i>	$1303.0 \pm 3.8 \pm 1.9$	$109.0 \pm 5.0 \pm 2.9$	$396 \pm 72 \pm 72$		
name	relevant data	pole mass $[MeV/c^2]$	pole width Γ [MeV]	$\Gamma_{KK}/\Gamma_{\pi\eta}$ [%]	$\Gamma_{\pi\eta'}/\Gamma_{\pi\eta}$ [%]	
<i>a</i> ₂ (1320)	$\bar{p}p + \pi p$	$1318.7 \pm 1.9 {}^{+1.3}_{-1.3}$	$107.5 \pm 4.6 {+3.3}_{-1.8}$	$31 \pm 22 {+9 \atop -11}$	$4.6 \pm 1.5 ^{+7.0}_{-0.6}$	
<i>a</i> ₂ (1700)	$\bar{p}p + \pi p$	$1686 \pm 22 {}^{+19}_{-7}$	$412\pm75~^{+64}_{-57}$	$2.9 \pm 4.0 \ ^{+1.1}_{-1.2}$	$3.5 \pm 4.4 {}^{+6.9}_{-1.2}$	
name	relevant data	pole mass [MeV/c ²]	pole width Γ [MeV]	$\Gamma_{\pi\pi}/\Gamma$ [%]	Γ _{KK} /Γ [%]	$\Gamma_{\eta\eta}/\Gamma$ [%]
<i>f</i> ₂ (1270)	$\bar{p}p + \text{scat}$	$1262.4 \pm 0.2 \substack{+0.2 \\ -0.3}$	$168.0 \pm 0.7 \substack{+1.7\\-0.1}$	$87.7 \pm 0.3 \begin{array}{c} +4.8 \\ -4.4 \end{array}$	$2.6 \pm 0.1 \substack{+0.1 \\ -0.2}$	$0.3 \pm 0.1 \substack{+0.0\\-0.1}$
$f'_{2}(1525)$		0.5		-1 -0.2 ± 0.8	$(7.0, 1.0, \pm 5.0)$	0.8 + 2.8 + 1.7
52()	$\bar{p}p + \text{scat}$	$1514.7 \pm 5.2 \substack{+0.3 \\ -7.4}$	$82.3 \pm 5.2 + 11.0 - 4.5$	$2.1 \pm 0.3 + 0.0$	$67.2 \pm 4.2 + 3.8$	$9.8 \pm 5.8_{-3.3}$

parameterisation is universal in be used in other analyses!

PArtial Wave Interactive Analysis

Exotic Hadron Spectroscopy 2024 - Swansea

 $\Gamma_{\eta\eta}/\Gamma$ [%]

Determination of the Coupling Strength

Determination of the two-photon width using the F-vector pole residue itself

- First determination of the helicity contributions for the $f'_2(1525)$
- Most accurate measurement for $f_2(1270)$ and $a_2(1320)$

11

• Scalar mesons $f_0(1370)$, $f_0(1500)$ und $f_0(1710)$ measured for the first time

Unique Features of Radiative J/ψ decays

- Lightest glueball 0^{++} is predicted below $2 \,\mathrm{GeV}/c^2$
- Observed states $f_0(1370)$, $f_0(1500)$, $f_0(1710)$ likely to be mixtures of pure glueball and quark component
- BESIII has accumulated very high statistics at J/ψ
 - 50 times more than 10 years ago!

Physics-, statistics- and phase space-wise great opportunities to search for glueball candidates!

Phys. Rev. D 73, 014516 (2006)

Recent Analyses

Coupled channel fit by Sarantsev et. al.: Phys. Lett. B 816 (2021), 136227

- $J/\psi \rightarrow \gamma + (\pi^0 \pi^0, K^0_S K^0_S, \eta \eta, \omega \phi)$ (BESIII)
- $\pi^+\pi^-$ scattering data (CERN-Munich, GAMS, BNL)
- $\bar{p}N \rightarrow 3$ mesons (CB-LEAR)
- Indirect hint for the light scalar glueball candidate by measuring production strengths of scalar states
- 0⁺⁺ glueball mixing interpretation via coupling of the 10 different scalar singlet and octet states

Coupled channel fit by JPAC group:

- Used $J/\psi \rightarrow \gamma \pi^0 \pi^0$, $\gamma K_S^0 K_S^0$ (BESIII) data
- Only 4 scalar poles needed not as 10
- No statement towards glueball contributions
- But: Theory has only access to binned data based on older data samples

EPJ C **82**, 80 (2022)

Recent Analyses

Coupled channel fit by Sarantsev et. al.: Phys. Lett. B 816 (2021), 136227

- $J/\psi \rightarrow \gamma + (\pi^0 \pi^0, K^0_S K^0_S, \eta \eta, \omega \phi)$ (BESIII)
- $\pi^+\pi^-$ scattering data (CERN-Munich, GAMS, BNL)
- $\bar{p}N \rightarrow 3$ mesons (CB-LEAR)
- Indirect hint for the light scalar glueball candidate by measuring production strengths of scalar states

Much higher statistics available now - 50 times more!

Event based mass-independent and coupled channel amplitude analyses in preparation for $J/\psi \to \gamma \pi^0 \pi^0$, $\gamma K_S^0 K_S^0$ and $\gamma \eta \eta$!

- Used $J/\psi \rightarrow \gamma \pi^0 \pi^0$, $\gamma K_S^0 K_S^0$ (BESIII) data
- Only 4 scalar poles needed not as 10
- No statement towards glueball contributions
- But: Theory has only access to binned data based on older data samples

 $J/\psi \to \gamma \eta' \pi^+ \pi^-$

Exotic Hadron Spectroscopy 2024 - Swansea

 $J/\psi \to \gamma \eta' K_S^0 K_S^0$

- Amplitude analysis using covariant tensor formalism including mostly Breit-Wigner line shapes + Flatté for $f_0(980)$
- Spin-parity of X(2370) determined to be $0^{-+}!$
- Could be a glueball candidate PRD 100 054511
 (2019) but predictions vary strongly...
- Further analyses of other channels will help to learn about sub processes and interplay with $K\bar{K}$ and $\pi^+\pi^-$ system

Meike Küßner

PRL 132 181901 (2024)

state	JPC	Decay mode	Mass (MeV/c^2)	Width (MeV/c^2)	Significance
X(2370)	0-+	$f_0(980)\eta'$	2395^{+11}_{-11}	188^{+18}_{-17}	14.9σ
X(1835)	0^-+	$f_0(980)\eta'$	1844	192	22.0σ
X(2800)	0-+	$f_0(980)\eta'$	2799^{+52}_{-48}	660^{+180}_{-116}	16.4σ
η_c	0-+	$f_0(980)\eta'$	2983.9	32.0	> 20.0 \sigma
PHSP	0-+	$\eta'(K_S^0K_S^0)_{S-wave}$			9.0σ
		$\eta'(K_S^0K_S^0)_{D-wave}$			16.3σ

Exotic Hadron Spectroscopy 2024 - Swansea

 $J/\psi \rightarrow \gamma \eta' \pi^+ \pi^-$

• Would be interesting to search for X states in two-photon data...

$J/\psi \to \gamma \eta' \eta$

- PWA of $J/\psi \rightarrow \gamma \eta \eta'$ using 10 Billion J/ψ events
- Veto ϕ in $\gamma\eta$ system
- 15000 signal events and ~ 8-13% background events remaining
- All kinematically allowed resonances as listed in the PDG considered
 - $J^{PC} = 0^{++}$, 2^{++} and 4^{++} ($\eta'\eta$ system)

•
$$J^{PC} = 1^{+-}$$
 and $1^{--} (\gamma \eta^{(\prime)} \text{ system})$

$$\eta'
ightarrow \gamma \pi^+ \pi^-$$

 $J/\psi \rightarrow \gamma \eta' \eta$

Additionally need of a spin exotic contribution found! $\Rightarrow \eta_1(1855)$

- $M = (1855 \pm 9^{+6}_{-1}) \text{ MeV}/c^2$, $\Gamma = (199 \pm 18^{+3}_{-8}) \text{ MeV}$
- May be the isoscalar partner of the $\pi_1(1600)$
- Further studies needed!
- Additional decay channels need to be investigated to improve the PWA model

Charmonium Sector

• Charmonia with vector q.n. can be directly created at e^+e^- colliders

 Other q.n. can only be accessed by sequential decays which limits the statistics

Besides expected states, additional "unconventional" states where observed!

Vector Charmonia

Vector Charmonia

Meike Küßner

Exotic Hadron Spectroscopy 2024 - Swansea

22

A first Step Towards a Global Description

Combined fit to 19 BESIII and Belle cross section results

arXiv:2312.17658

A first Step Towards a Global Description

Combined fit to 19 BESIII and Belle cross section results

arXiv:2312.17658

News on the Z_c(3900)

- New results based using 12 fb-1 at 17 energies between 4.13 and 4.36 GeV
- PWA performed in helicity formalism, 2 models used:
- (I) $f_0(980)$ with Flatté, $\sigma(500)$, $f_0(1370)$, $f_2(1270)$ and $Z_c(3900)$ as Breit-Wigner PLB 607, 243 (2005)
- (II) $f_0(980)$, $\sigma(500)$, $f_0(1370)$ using K-matrix, $f_2(1270)$ and $Z_c(3900)$ as Breit-Wigner EPJA 16, 229 (2003)

Meike Küßner

• Mass and width of $Z_c(3900)$ determined via simultaneous fit

Sample	$M ({\rm MeV}/c^2)$	Γ (MeV)
4.1567 - 4.1989	3883.5 ± 1.6	38.6 ± 3.6
4.2091 - 4.2357	3884.0 ± 1.0	37.8 ± 1.6
4.2438 - 4.2776	3884.9 ± 1.8	34.2 ± 3.3
4.2866 - 4.3583	3890.0 ± 2.3	36.1 ± 4.2
Average	$3884.6 \pm 0.7 \pm 3.3$	$37.2 \pm 1.3 \pm 6.6$

The Story of $\chi_{c1}(3872)/X(3872)$

- Very narrow 1^{++} state, sitting just at the $D^0 \overline{D}^{*0}$ threshold
- Well established production channel: $\psi(4230) \rightarrow \gamma \chi_{c1}(3872)$
 - Precision studies possible!

- Seen in various production channels by now: B/Λ_b decays, pp, Pb Pb, e^+e^-
- ... and in various decay modes: $J/\psi(\pi^+\pi^-)\rho$, $D^0\bar{D}^{*0}$, $J/\psi\gamma$ $\psi(2S)\gamma$, $\chi_{c1}\pi^0$, ...
- Ispospin violating decay is enhanced by a factor of 5 compared to "ordinary" charmonia
- Sensitivity to underlying lineshape is washed out by detector resolution

The Story of Xc1(3872)/X(3872)

- Very narrow 1^{++} state, sitting just at the $D^0 \overline{D}^{*0}$ threshold
- Well established production channel: $\psi(4230) \rightarrow \gamma \chi_{c1}(3872)$
 - Precision studies possible!

- Seen in various production channels by now: B/Λ_b decays, pp, Pb Pb, e^+e^-
- ... and in various decay modes: $J/\psi(\pi^+\pi^-)\rho$, $D^0\bar{D}^{*0}$, $J/\psi\gamma$ $\psi(2S)\gamma$, $\chi_{c1}\pi^0$, ...
- Ispospin violating decay is enhanced by a factor of 5 compared to "ordinary" charmonia
- Sensitivity to underlying lineshape is washed out by detector resolution

- If we want to clarify this we need << MeV resolution! No detector can do this.</p>
- Similar structures seen in $D^0 D^0 \pi^+$: $T_{cc}(3875)$
- How are they related? Is it the same underlying physics?

Coupled Channel Fit to Xc1(3872)

PRL 132 (2024) 15, 151903

• Simultaneous fit to $D^0 \overline{D}{}^0 \pi^0$ and $\pi^+ \pi^- J/\psi$

Meike Küßner Exotic Hadron Spectroscopy 2024 - Swansea

Coupled Channel Fit to Xc1(3872)

PRL 132 (2024) 15, 151903

• Simultaneous fit to $D^0 \overline{D}{}^0 \pi^0$ and $\pi^+ \pi^- J/\psi$

Line Shape Scans at PANDA

- Measure the lineshape with high precision by scanning the resonance in production
- Line shape resolution is only limited by the beam resolution, not the detector resolution here!
- Analysis performed for 20 energy points around nominal mass
- In sensitivity studies able to distinguish the two scenarios
- With the PANDA setup this corresponds to only about a month of data taking!
- In p
 p
 p
 p
 annihilation almost all Q.N. can be produced directly!

Summary

- Although light mesons are studied for decades, there are still many open questions
- The non-perturbative regime of QCD challenges theory and experiment!
- This affects also other sectors as CP violation!
- Sophisticated line shape models should be used whenever possible
- Different experiments and theory need to collaborate to solve this
- Coupled channel analyses seem to be a good tool to disentangle crowded spectra
- Work closer together in the community common effort is needed to answer fundamental questions!
- BESIII is very much open to experiment-theory collaboration!

Outlook

• Upgrade of the accelerator BEPCII:

- Center-of-mass energies up to 5.6 GeV
- Charmed baryon thresholds in reach: $e^+e^- \rightarrow \Sigma_c \bar{\Sigma}_c, \Xi_c \bar{\Xi}_c, \Omega_c \bar{\Omega}_c$
- Pentaquarks above above $J/\psi \bar{p} p$ threshold?
- Historically there where not many facilities studying this energy regime
- Up to 3x higher luminosities in XYZ region
- Precision XYZ physics at BESIII including fine energy and lineshape scans tlineshapes

Outlook

Exotic Hadron Spectroscopy 2024 - Swansea

Thank you!

Exotic Hadron Spectroscopy 2024 - Swansea