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LHC physics

· fundamental questions

· huge data set

· first-principle, precision simulations

· complete uncertainty control

Successful past

· measurements of total rates

· analyses inspired by simulation

· model-driven Higgs discovery

First-principle, precision simulations

· start with Lagrangian

· calculate scattering using QFT

· simulate collisions

· simulate detectors

→ LHC collisions in virtual worlds

(Instead of) BSM searches

· compare simulations and data

· infer underlying theory [SM or BSM]

· publish results/data meaningfully

→ Understand LHC data systematically

detectors EventsQCDscattering decay fragmentationshowerTheory

forward

inverse
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start with Lagrangian

· compute hard scattering
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compute jet radiation

· parton densities [NNPDF]

hadron-level QCD

→ First-principle simulations, with help from ML
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Turning data to knowledge
detectors EventsQCDscattering decay fragmentationshowerTheory

forward

inverse· Quantum Field Theory
start with Lagrangian

· compute hard scattering
compute decays
compute jet radiation

· parton densities [NNPDF]

hadron-level QCD

→ First-principle simulations, with help from ML

HL-LHC: inference with 10× more data

· SBI starts with Simulation...

· statistical improvement
√

10 = 3

· rate over phase space to < 0.1%

· theory to follow

· precision = QFT × Compute

→ Everything, faster and better...

Scienti�c simulators
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Shortest ML-intro ever

Fit-like approximation

· approximate fθ(x) ≈ f (x)

· no parametrization, just very many θ

· new representation/latent space θ

Applications

· applications all over experiment

· regression x → fθ(x)

· classification x → fθ(x) ∈ [0, 1]

· generation r ∼ N → fθ(r)

· conditional generation r ∼ N → fθ(r |x)

Architectures

· physics-aware questions and data representation

· symmetries, locality, etc

· accuracy, control, error bars?

· is LHC data images or language?

→ Complexity a feature, not a problem
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Network training

Encoding a transtition amplitude-squared

· expectation value from probability
〈A〉(x) =

∫
dA A p(A|x)

· internal representation θ
〈A〉 =

∫
dA A

∫
dθ p(A|θ) p(θ|Atrain)

· training a generalization of θ-probability∫
dθ p(A|θ) p(θ|Atrain) ≈

∫
dθ p(A|θ) q(θ)
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Network training

Encoding a transtition amplitude-squared

· expectation value from probability
〈A〉(x) =

∫
dA A p(A|x)

· internal representation θ
〈A〉 =

∫
dA A

∫
dθ p(A|θ) p(θ|Atrain)

· training a generalization of θ-probability∫
dθ p(A|θ) p(θ|Atrain) ≈

∫
dθ p(A|θ) q(θ)

· similarity from minimal KL-divergence

DKL[q(θ), p(θ|Atrain)] ≡
∫

dθ q(θ) log
q(θ)

p(θ|Atrain)

=

∫
dθ q(θ) log

q(θ)p(Atrain)

p(Atrain|θ)p(θ)

= −
∫

dθ q(θ) log p(Atrain|θ) +

∫
dθ q(θ) log

q(θ)

p(θ)
+ · · ·

→ Simplification: likelihood + regularization + dropout

LBNN = −
∫

dθ q(θ) log p(Atrain|θ) + DKL[q(θ), p(θ)]

→ (Aθ − Atrain)2 + c(θ − θ0)2
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ML in experiment

Top tagging [classification, 2016-today]

· ‘hello world’ of LHC-ML

· end of QCD-taggers

· ever-improving [Huilin Qu]

→ Driving NN-architectures
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Top tagging [classification, 2016-today]

· ‘hello world’ of LHC-ML

· end of QCD-taggers

· ever-improving [Huilin Qu]

→ Driving NN-architectures

Particle flow [2020-today]

· mother of jet analyses

· combining detectors with different resolution

· optimality the key

→ Modern jet analysis basics

Progress towards an improved particle flow algorithm

at CMS with machine learning

Farouk Mokhtar1, Joosep Pata2, Javier Duarte1, Eric Wul↵3,
Maurizio Pierini3 and Jean-Roch Vlimant4

(on behalf of the CMS Collaboration)
1University of California San Diego, La Jolla, CA 92093, USA
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3European Organization for Nuclear Research (CERN), CH 1211, Geneva 23, Switzerland
4California Institute of Technology, Pasadena, CA 91125, USA
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Abstract. The particle-flow (PF) algorithm, which infers particles based on tracks and
calorimeter clusters, is of central importance to event reconstruction in the CMS experiment
at the CERN LHC, and has been a focus of development in light of planned Phase-2
running conditions with an increased pileup and detector granularity. In recent years, the
machine-learned particle-flow (MLPF) algorithm, a graph neural network that performs PF
reconstruction, has been explored in CMS, with the possible advantages of directly optimizing
for the physical quantities of interest, being highly reconfigurable to new conditions, and
being a natural fit for deployment to heterogeneous accelerators. We discuss progress in
CMS towards an improved implementation of the MLPF reconstruction, now optimized using
generator/simulation-level particle information as the target for the first time. This paves the
way to potentially improving the detector response in terms of physical quantities of interest.
We describe the simulation-based training target, progress and studies on event-based loss
terms, details on the model hyperparameter tuning, as well as physics validation with respect
to the current PF algorithm in terms of high-level physical quantities such as the jet and
missing transverse momentum resolutions. We find that the MLPF algorithm, trained on a
generator/simulator level particle information for the first time, results in broadly compatible
particle and jet reconstruction performance with the baseline PF, setting the stage for improving
the physics performance by additional training statistics and model tuning.

1. Introduction
Particle-flow (PF) reconstruction is a global event reconstruction that combines information
from di↵erent subdetectors in CMS (e.g. the tracker and the electromagnetic and hadronic
calorimeters) to reconstruct stable particles [1]. The machine-learned particle-flow (MLPF)
algorithm is a graph neural network (GNN) trained to perform PF reconstruction via supervised
machine learning (ML) [2, 3, 4]. As with the baseline rule-based PF, the inputs to MLPF are
tracks and calorimeter clusters (see Figure 1), and the outputs are stable PF candidate particles.
The advantages of MLPF include the possibility of deployment on heterogeneous computing
accelerators (e.g. GPUs) and reoptimizing the algorithm in light of new experimental conditions.

In this work, we summarize the latest developments of MLPF in CMS, which includes the
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Parton densities [NNPDF, 2002-today]

· pdfs without functional bias and full uncertainties

· precision and calibrated uncertainties

→ Drivers of ML-theory

Figure 4.6. The gluon-gluon, gluon-quark, quark-quark, and quark-antiquark parton luminosities as a function of
mX at

p
s = 14 TeV, computed with NLO, NNLO and aN3LO NNPDF4.0 PDFs without MHOUs (left) and with

MHOUs (right), all shown as a ratio to the respective aN3LO results. Uncertainties are as in Figs. 4.2-4.4
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Abstract

We extend the existing leading (LO), next-to-leading (NLO), and next-to-next-to-leading order (NNLO)
NNPDF4.0 sets of parton distribution functions (PDFs) to approximate next-to-next-to-next-to-leading
order (aN3LO). We construct an approximation to the N3LO splitting functions that includes all available
partial information from both fixed-order computations and from small and large x resummation, and
estimate the uncertainty on this approximation by varying the set of basis functions used to construct
the approximation. We include known N3LO corrections to deep-inelastic scattering structure functions
and extend the FONLL general-mass scheme to O

�
↵3

s

�
accuracy. We determine a set of aN3LO PDFs by

accounting both for the uncertainty on splitting functions due to the incomplete knowledge of N3LO terms,
and to the uncertainty related to missing higher corrections (MHOU), estimated by scale variation, through
a theory covariance matrix formalism. We assess the perturbative stability of the resulting PDFs, we study
the impact of MHOUs on them, and we compare our results to the aN3LO PDFs from the MSHT group.
We examine the phenomenological impact of aN3LO corrections on parton luminosities at the LHC, and
give a first assessment of the impact of aN3LO PDFs on the Higgs and Drell-Yan total production cross-
sections. We find that the aN3LO NNPDF4.0 PDFs are consistent within uncertainties with their NNLO
counterparts, that they improve the description of the global dataset and the perturbative convergence of
Higgs and Drell-Yan cross-sections, and that MHOUs on PDFs decrease substantially with the increase of
perturbative order.
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Ultra-fast event generators [Sherpa, MadNIS, MLHad]

· event generation modular

· improve and replace by ML-modules

→ Beat state of the art
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The MADNIS Reloaded

Theo Heimel1, Nathan Huetsch1, Fabio Maltoni2,3,
Olivier Mattelaer2, Tilman Plehn1, and Ramon Winterhalder2

1 Institut für Theoretische Physik, Universität Heidelberg, Germany
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December 17, 2024

Abstract

In pursuit of precise and fast theory predictions for the LHC, we present an implementa-
tion of the MADNIS method in the MADGRAPH event generator. A series of improvements
in MADNIS further enhance its efficiency and speed. We validate this implementation
for realistic partonic processes and find significant gains from using modern machine
learning in event generators.

Contents

1 Introduction 2

2 Improving MADNIS 3
2.1 ML implementation 4
2.2 Multi-channel loss 6
2.3 VEGAS initialization 7
2.4 Training strategies 9

3 Implementation and benchmarks 10
3.1 Reference processes 11
3.2 Benchmarking MADNIS features 11
3.3 Learning from channel weights 13
3.4 Scaling with jet multiplicity 14

4 Outlook 14

A Hyperparameters 17

B Channel-weight kinematics 17
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Optimizing integration paths [invertible networks]

· find optimal integration paths

· learn variable transformation

→ Theory-integrator
SciPost Phys. 12, 129 (2022)
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Figure 1: Feynman diagrams for our four example integrals, which we call pen-
tagon1L, ladder2L (first line) and triangle2L, elliptic2L (second line). The blue lines
denote massive lines, green lines denote massive or off-shell external legs (with a
mass different from m).

Example diagrams

The Feynman diagrams we use to develop and benchmark our approaches are shown in Fig-
ure 1.

The top left diagram is a one-loop pentagon integral as it occurs in the production of a
top quark pair in association with another massive particle and depends on four independent
Mandelstam invariants as well as the top quark mass and the invariant mass of p5. Analyti-
cally it depends on logarithms and dilogarithms of ratios of kinematic invariants, leading to a
complicated branch-cut structure. After Feynman parametrization the corresponding integral
is described by 4 independent Feynman parameters.

The top right diagram is a two-loop box diagram with one massive on-shell leg and one
off-shell leg. This diagram is a topology occurring for example in t t̄V production at two loops,
where the boson V is radiated off an external top quark. It is close to the configuration of a
2-loop gluon ladder diagram where the exchange of gluons between two top quark lines gives
rise to a Coulomb singularity. The analytic expression for this type of diagram is not known,
but it is anticipated that it will contain elliptic functions. This integral depends on 6 Feynman
parameters and is the most complicated example we consider in terms of dimensionality.

The diagram on the lower left of Figure 1 is a two-loop three-point function with a massive
sub-triangle occurring, for instance, in NLO corrections to Higgs production in gluon fusion.
It is the easiest 2-loop diagram we consider and serves as a stepping stone towards more
complicated 2-loop diagrams. Analytic results for this diagram can be found in Refs. [49–51].
Depending on 5 Feynman parameters this integral is in between the previous two examples in
terms of dimensionality of the integration.

The diagram on the lower right is a topology occurring in Higgs+jet production in gluon
fusion at two loops. Its analytic expression contains elliptic functions and therefore is cut-
ting edge for integrals that are currently accessible analytically. It has been calculated (semi-
)analytically in Refs. [52, 53] and also served as a benchmark for the development of the
program pySECDEC [45], where it is contained in the list of examples. This integral is 5-
dimensional, so it has the same number of Feynman parameters as the triangle diagram, but
it depends on four kinematic invariants rather than two.
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Targeting multi-loop integrals with neural networks
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Abstract

Numerical evaluations of Feynman integrals often proceed via a deformation of the
integration contour into the complex plane. While valid contours are easy to construct,
the numerical precision for a multi-loop integral can depend critically on the chosen
contour. We present methods to optimize this contour using a combination of optimized,
global complex shifts and a normalizing flow. They can lead to a significant gain in
precision.
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is described by 4 independent Feynman parameters.

The top right diagram is a two-loop box diagram with one massive on-shell leg and one
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2-loop gluon ladder diagram where the exchange of gluons between two top quark lines gives
rise to a Coulomb singularity. The analytic expression for this type of diagram is not known,
but it is anticipated that it will contain elliptic functions. This integral depends on 6 Feynman
parameters and is the most complicated example we consider in terms of dimensionality.
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sub-triangle occurring, for instance, in NLO corrections to Higgs production in gluon fusion.
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complicated 2-loop diagrams. Analytic results for this diagram can be found in Refs. [49–51].
Depending on 5 Feynman parameters this integral is in between the previous two examples in
terms of dimensionality of the integration.

The diagram on the lower right is a topology occurring in Higgs+jet production in gluon
fusion at two loops. Its analytic expression contains elliptic functions and therefore is cut-
ting edge for integrals that are currently accessible analytically. It has been calculated (semi-
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Abstract

Numerical evaluations of Feynman integrals often proceed via a deformation of the
integration contour into the complex plane. While valid contours are easy to construct,
the numerical precision for a multi-loop integral can depend critically on the chosen
contour. We present methods to optimize this contour using a combination of optimized,
global complex shifts and a normalizing flow. They can lead to a significant gain in
precision.
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Navigating string landscape [reinforcement learning]

· searching for viable vacua

· high dimensions, unknown global structure

→ Model space sampling
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ABSTRACT

We demonstrate the emergence of scaling laws in the benchmark top versus QCD jet classification
problem in collider physics. Six distinct physically-motivated classifiers exhibit power-law scaling of
the binary cross-entropy test loss as a function of training set size, with distinct power law indices.
This result highlights the importance of comparing classifiers as a function of dataset size rather than
for a fixed training set, as the optimal classifier may change considerably as the dataset is scaled up.
We speculate on the interpretation of our results in terms of previous models of scaling laws observed
in natural language and image datasets.

1 Introduction

In just the past few years, neural scaling laws [1] have gained prominence both as an emergent property of large machine
learning (ML) models and as a practical tool for predicting the performance of such models. Across a wide variety of
tasks and architectures, the training or test loss L is observed to follow a power law,

L(T ) = AT�↵T + C, (1)

where T represents a variable such as the size of the training set, the number of parameters, or the amount of compute;
↵T is a task-dependent power law index which depends on the choice of variable T but only weakly on architecture and
other hyperparameters; and C is the irreducible loss which persists in the limit of infinite data/parameters/compute. A
first-principles understanding of the robustness and ubiquity of these power laws remains elusive (though see [2–4]),
but in industry applications, the scaling of performance is so reliable that it can be used to correctly predict the trained
model loss after scaling the model up by multiple orders of magnitude [5, 6].

ML models have also gained prominence as tools for solving problems in physics. A common application is the
processing of data from high-energy particle colliders (see the “living review” [7] for a continually-updated compendium
of references). In such experiments, the volume of data is enormous, even by industry standards: the Large Hadron
Collider (LHC) generates about 1 petabyte per second of raw data [8], the vast majority of which must be discarded in
order to store the (still enormous) 160 petabytes per year of “interesting” data to disk. The upgraded High Luminosity
LHC (HL-LHC) expects to increase both the total event rate and the recorded data rate by more than an order of
magnitude [9, 10]. If some fraction of the discarded data could be used to train ML models to aid with analysis tasks,
that would have enormous practical implications for the design of the hardware “trigger” that determines which events to
keep for offline analysis. While there is some concern among builders of large language models that such models might
“run out of data” before saturating the returns to scale, ML models in physics are currently trained on a vanishingly
small fraction of the total data available.1 In spite of this abundant resource, in nearly all collider physics studies using
ML tools, competing models are typically compared to one another at some fixed but arbitrary T .

⇤Now employed at Anthropic.
1This observation holds whether or not the training dataset is drawn from simulated data or real data. Independent of the subtle

question of whether simulations are accurately capturing the true distribution of real data, the only limitation to scaling up the training
sets generated from Monte Carlo event generators seems to be storage space, rather than any principled reason.
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Abstract

This work presents a novel means for understanding learning dynamics and scaling
relations in neural networks. We show that certain measures on the spectrum of the
empirical neural tangent kernel, specifically entropy and trace, yield insight into the
representations learned by a neural network and how these can be improved through
architecture scaling. These results are demonstrated first on test cases before being
shown on more complex networks, including transformers, auto-encoders, graph
neural networks, and reinforcement learning studies. In testing on a wide range of
architectures, we highlight the universal nature of training dynamics and further
discuss how it can be used to understand the mechanisms behind learning in neural
networks. We identify two such dominant mechanisms present throughout machine
learning training. The first, information compression, is seen through a reduction
in the entropy of the NTK spectrum during training, and occurs predominantly in
small neural networks. The second, coined structure formation, is seen through
an increasing entropy and thus, the creation of structure in the neural network
representations beyond the prior established by the network at initialization. Due
to the ubiquity of the latter in deep neural network architectures and its flexibility
in the creation of feature-rich representations, we argue that this form of evolution
of the network’s entropy be considered the onset of a deep learning regime.

1 Introduction

Scaling behaviour in neural networks has become a pivotal area of investigation in modern deep-
learning research. Traditional scaling laws, which correlate the number of network parameters with
performance metrics, provide a foundational understanding but often fall short when comparing
different architectures or capturing the intricacies of neural network dynamics arising from the
architecture of the network itself. To bridge this gap, our research leverages the neural tangent kernel

Preprint. Under review.
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↵T is a task-dependent power law index which depends on the choice of variable T but only weakly on architecture and
other hyperparameters; and C is the irreducible loss which persists in the limit of infinite data/parameters/compute. A
first-principles understanding of the robustness and ubiquity of these power laws remains elusive (though see [2–4]),
but in industry applications, the scaling of performance is so reliable that it can be used to correctly predict the trained
model loss after scaling the model up by multiple orders of magnitude [5, 6].

ML models have also gained prominence as tools for solving problems in physics. A common application is the
processing of data from high-energy particle colliders (see the “living review” [7] for a continually-updated compendium
of references). In such experiments, the volume of data is enormous, even by industry standards: the Large Hadron
Collider (LHC) generates about 1 petabyte per second of raw data [8], the vast majority of which must be discarded in
order to store the (still enormous) 160 petabytes per year of “interesting” data to disk. The upgraded High Luminosity
LHC (HL-LHC) expects to increase both the total event rate and the recorded data rate by more than an order of
magnitude [9, 10]. If some fraction of the discarded data could be used to train ML models to aid with analysis tasks,
that would have enormous practical implications for the design of the hardware “trigger” that determines which events to
keep for offline analysis. While there is some concern among builders of large language models that such models might
“run out of data” before saturating the returns to scale, ML models in physics are currently trained on a vanishingly
small fraction of the total data available.1 In spite of this abundant resource, in nearly all collider physics studies using
ML tools, competing models are typically compared to one another at some fixed but arbitrary T .
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of the network’s entropy be considered the onset of a deep learning regime.
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Scaling behaviour in neural networks has become a pivotal area of investigation in modern deep-
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performance metrics, provide a foundational understanding but often fall short when comparing
different architectures or capturing the intricacies of neural network dynamics arising from the
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Extrapolating transformers

· train on QCD jet radiation

· learn to generate universal patterns

→ Extrapolation at work
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Abstract

Generative networks are an exciting tool for fast LHC event generation. Usually, they
are used to generate configurations with a fixed number of particles. Autoregressive
transformers allow us to generate events with variable numbers of particles, very much
in line with the physics of QCD jet radiation. We show how they can learn a factorized
likelihood for jet radiation and extrapolate in terms of the number of generated jets. For
this extrapolation, bootstrapping training data and training with modifications of the
likelihood loss can be used.
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Amplitude regression

An IPPP story...

· gg → ZZ [Bishara & Montull (2019)]→ BDTs as a start

· e+e− → 5 jets [Badger, Bullock (2020)]→ ensembles and K -factors

· gg → γγg(g) [Aylett-Bullock, Badger, Moodie (2021)]→ speed gain 104

· e+e− → 5 jets [Maitre & Truong (2021)]→ Catani-Seymour coefficients

· e+e− → 5 [Maitre & Truong (2023)]→ antenna functions

· gg → γγg(g) [Badger+Heidelberg (2024]→ boosted training

· t t̄H NNLO tests [Breso, Heinrich, Magerya, Olsson]→ race for best performance
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Amplitude regression

An IPPP story...

· gg → ZZ [Bishara & Montull (2019)]→ BDTs as a start

· e+e− → 5 jets [Badger, Bullock (2020)]→ ensembles and K -factors

· gg → γγg(g) [Aylett-Bullock, Badger, Moodie (2021)]→ speed gain 104

· e+e− → 5 jets [Maitre & Truong (2021)]→ Catani-Seymour coefficients

· e+e− → 5 [Maitre & Truong (2023)]→ antenna functions

· gg → γγg(g) [Badger+Heidelberg (2024]→ boosted training

· t t̄H NNLO tests [Breso, Heinrich, Magerya, Olsson]→ race for best performance

Learned uncertainties [Bahl, Elmer, Favaro, Haussmann, TP, Winterhalder]

· systematic: (added) noise, expressivity, data representation
learned by heteroscedastic loss and BNNs

· statistical: too little training data
learned by BNN or repulsive ensembles

· calibration of learned uncertainties?
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An IPPP story...

· gg → ZZ [Bishara & Montull (2019)]→ BDTs as a start

· e+e− → 5 jets [Badger, Bullock (2020)]→ ensembles and K -factors

· gg → γγg(g) [Aylett-Bullock, Badger, Moodie (2021)]→ speed gain 104

· e+e− → 5 jets [Maitre & Truong (2021)]→ Catani-Seymour coefficients

· e+e− → 5 [Maitre & Truong (2023)]→ antenna functions

· gg → γγg(g) [Badger+Heidelberg (2024]→ boosted training

· t t̄H NNLO tests [Breso, Heinrich, Magerya, Olsson]→ race for best performance

Learned uncertainties [Bahl, Elmer, Favaro, Haussmann, TP, Winterhalder]

· systematic: (added) noise, expressivity, data representation
learned by heteroscedastic loss and BNNs

· statistical: too little training data
learned by BNN or repulsive ensembles

· calibration of learned uncertainties?

→ Path to 10−5 accuracy
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ATLAS calibration

Energy calibration with uncertainties [ATLAS + Vogel, 2412.04370]

· interpretable calorimeter phase space x

· learned calibration function

RBNN(x)±∆RBNN(x) ≈ Eobs(x)

Edep(x)

· uncertainties: noise in data
network expressivity
data representation ...
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ATLAS calibration

Energy calibration with uncertainties [ATLAS + Vogel, 2412.04370]

· interpretable calorimeter phase space x

· learned calibration function

RBNN(x)±∆RBNN(x) ≈ Eobs(x)

Edep(x)

· uncertainties: noise in data
network expressivity
data representation ...

→ Understand (simulated) detector
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Simulations, MadNIS, calorimeters,...

· learn phase space density
fast sampling Gaussian→ phase space

· Variational Autoencoder
→ low-dimensional physics

· Generative Adversarial Network
→ generator trained by classifier

· Normalizing Flow/Diffusion
→ (bijective) mapping

· JetGPT, ViT
→ non-local structures

· Equivariant L-GATr
→ Lorentz symmetry for efficiency

→ Equivariant transformer CFM... [Maitre, Ngairangbam, Spannowsky,...]
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Generative AI with uncertainties

Bayesian generative networks [Bellagente, Haussmann, Luchmann, TP]

· network weight distributions for density

· sampling phase space
events with error bars on weights

· learned density & uncertainty
reflecting network learning?

→ Generative networks like fitted densities
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Generative AI with uncertainties

Bayesian generative networks [Bellagente, Haussmann, Luchmann, TP]

· network weight distributions for density

· sampling phase space
events with error bars on weights

· learned density & uncertainty
reflecting network learning?

→ Generative networks like fitted densities

Z+jets events [Heimel, Vent...]

· per-cent accuracy on density

· statistical uncertainty from BNN

· systematics in training data
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Controlling generative AI

Compare generated with training data

· regression accuracy ∆ = (Adata − Aθ)/Adata

· harder for generation, unsupervised density
classify training vs generated events D(x)
learned density ratio [Neyman-Pearson]

w(xi ) =
D(xi )

1− D(xi )
=

pdata(xi )

pmodel(xi )

→ Test ratio over phase space
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Controlling generative AI

Compare generated with training data

· regression accuracy ∆ = (Adata − Aθ)/Adata

· harder for generation, unsupervised density
classify training vs generated events D(x)
learned density ratio [Neyman-Pearson]

w(xi ) =
D(xi )

1− D(xi )
=

pdata(xi )

pmodel(xi )

→ Test ratio over phase space

Progress in NN-generators

· any generative AI task

· compare different architectures

· accuracy from width of weight distribution

· tails indicating failure mode

→ Systematic performance test
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Transforming LHC physics

Number of searches

· optimal inference: signal and background simulations

· CPU-limitation for many signals?

Optimal analyses

· theory limiting many analyses

· include predictions not in event generators

Public LHC data

· common lore:
LHC data too complicated for amateurs

· in truth:
hard scattering and decay simulations public
BSM physics not in hadronization and detector

→ Unfold to suitable level

detectors EventsQCDscattering decay fragmentationshowerTheory

forward

inverse
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ML-Unfolding

Basic structure [Butter, Köthe, TP, Winterhalder]

· four phase space distributions

psim(xpart)
unfolding inference←−−−−−−−−→ punfold(xpart)

p(xreco|xpart)

y
xp(xpart|xreco)

psim(xreco)
forward inference←−−−−−−−−−→ pdata(xreco)

· learn conditional probabilities from (xpart, xreco) [forward-inverse symmetric]

→ ML for unbinned and high-dimensional unfolding?
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Basic structure [Butter, Köthe, TP, Winterhalder]

· four phase space distributions

psim(xpart)
unfolding inference←−−−−−−−−→ punfold(xpart)

p(xreco|xpart)
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psim(xreco)
forward inference←−−−−−−−−−→ pdata(xreco)

· learn conditional probabilities from (xpart, xreco) [forward-inverse symmetric]

→ ML for unbinned and high-dimensional unfolding?

OmniFold [Andreassen, Komiske, Metodiev, Nachman, Thaler + ATLAS]

· learn psim(xreco)↔ pdata(xreco) [Neyman-Pearson]

· reweight psim(xpart)→ punfold(xpart)

psim(xpart)
classifier weights−−−−−−−−−−→ punfold(xpart)

pull/push weights

xy
psim(xreco)

classifier weights←−−−−−−−−→ pdata(xreco)

→ Z+jets in 24D [ATLAS]
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Unfolding top decays

A challenge [Favaro, Kogler, Paasch, Palacios Schweitzer, TP, Schwarz]

· first measure mt in unfolded data
then unfold full kinematics
· model dependence: simulation ms vs data md

psim(xpart|ms) punfold(xpart|ms,md )

p(xreco|xpart)

y
xpmodel(xpart|xreco,ms )

psim(xreco|ms)
correspondence←−−−−−−−−→ pdata(xreco|md )
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Unfolding top decays

A challenge [Favaro, Kogler, Paasch, Palacios Schweitzer, TP, Schwarz]

· first measure mt in unfolded data
then unfold full kinematics
· complete training bias md → ms [too bad to reweight]

psim(xpart|ms) punfold(xpart|ms,��md )

p(xreco|xpart)

y
xpmodel(xpart|xreco,ms )

psim(xreco|ms)
correspondence←−−−−−−−−→ pdata(xreco|md )

1 weaken bias by training on ms-range

2 strengthen data by including batch-wise md ∼ Mjjj ∈ xreco
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Unfolding top decays

A challenge [Favaro, Kogler, Paasch, Palacios Schweitzer, TP, Schwarz]

· first measure mt in unfolded data
then unfold full kinematics
· complete training bias md → ms [too bad to reweight]

psim(xpart|ms) punfold(xpart|ms,��md )

p(xreco|xpart)

y
xpmodel(xpart|xreco,ms )

psim(xreco|ms)
correspondence←−−−−−−−−→ pdata(xreco|md )

1 weaken bias by training on ms-range

2 strengthen data by including batch-wise md ∼ Mjjj ∈ xreco

Preliminary unfolding results [TraCFM]

· 4D for calibrated mass measurement
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Unfolding top decays

A challenge [Favaro, Kogler, Paasch, Palacios Schweitzer, TP, Schwarz]

· first measure mt in unfolded data
then unfold full kinematics
· complete training bias md → ms [too bad to reweight]

psim(xpart|ms) punfold(xpart|ms,��md )

p(xreco|xpart)

y
xpmodel(xpart|xreco,ms )

psim(xreco|ms)
correspondence←−−−−−−−−→ pdata(xreco|md )

1 weaken bias by training on ms-range

2 strengthen data by including batch-wise md ∼ Mjjj ∈ xreco

Preliminary unfolding results [TraCFM]

· 4D for calibrated mass measurement

· 12D published data

→ CMS data next 0.00
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ML for LHC Theory

Developing ML for the best science

1 just another numerical tool for a numerical field

2 completely transformative new language

· driven by money from data science and medical research

· physics should be leading scientific AI

· 1000 Einsteins...
...improving established tools
...developing new tools for established tasks
...transforming through new ideas

→ You can be the golden generation!
Modern Machine Learning for LHC Physicists

Tilman Plehna*, Anja Buttera,b, Barry Dillona,
Theo Heimela, Claudius Krausec, and Ramon Winterhalderd

a Institut für Theoretische Physik, Universität Heidelberg, Germany
b LPNHE, Sorbonne Université, Université Paris Cité, CNRS/IN2P3, Paris, France

c HEPHY, Austrian Academy of Sciences. Vienna, Austria
d CP3, Université catholique de Louvain, Louvain-la-Neuve, Belgium

March 19, 2024

Abstract

Modern machine learning is transforming particle physics fast, bullying its way into our numerical tool box. For young
researchers it is crucial to stay on top of this development, which means applying cutting-edge methods and tools to the full
range of LHC physics problems. These lecture notes lead students with basic knowledge of particle physics and significant
enthusiasm for machine learning to relevant applications. They start with an LHC-specific motivation and a non-standard
introduction to neural networks and then cover classification, unsupervised classification, generative networks, and inverse
problems. Two themes defining much of the discussion are well-defined loss functions and uncertainty-aware networks.
As part of the applications, the notes include some aspects of theoretical LHC physics. All examples are chosen from
particle physics publications of the last few years.1

*plehn@uni-heidelberg.de
1Given that these notes are by definition always outdated, they will be updated frequently, together with the corresponding tutorials.
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http://www.thphys.uni-heidelberg.de/~plehn/pics/modern_ml.pdf
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