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All about LHC physics

Classic motivation
- dark matter?
- matter vs antimatter?
- origin of Higgs boson?
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All about LHC physics

Classic motivation
- dark matter?
- matter vs antimatter?
- origin of Higgs boson?

LHC physics
- fundamental questions
- huge data set
- first-principle, precision simulations
- complete uncertainty control

Successful past
- measurements of total rates
- analyses inspired by simulation
- model-driven Higgs discovery



All about LHC physics

Classic motivation
- dark matter?
- matter vs antimatter?
- origin of Higgs boson?

LHC physics
- fundamental questions
- huge data set
- first-principle, precision simulations
- complete uncertainty control

Successful past

- measurements of total rates
- analyses inspired by simulation
- model-driven Higgs discovery

forward

First-principle, precision simulations

- start with Lagrangian
- calculate scattering using QF T
- simulate collisions
- simulate detectors
— LHC collisions in virtual worlds

(Instead of) BSM searches

- compare simulations and data
- infer underlying theory [smorBsm)
- publish results/data meaningfully
— Understand LHC data systematically

scattering

PAUAS

decay

Qco shower detectors
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LHC Theory

Turning data to knowledge @

- Quantum Field Theory
start with Lagrangian

- compute hard scattering
compute decays
compute jet radiation

- parton densities [NnNPOF)
hadron-level QCD

— First-principle simulations, with help from ML




LHC Theory

Turning data to knowledge @

- Quantum Field Theory
start with Lagrangian

- compute hard scattering
compute decays
compute jet radiation

- parton densities [NnNPOF)
hadron-level QCD

— First-principle simulations, with help from ML

HL-LHC: inference with 10x more data
- SBI starts with Simulation...
- statistical improvement /10 = 3
- rate over phase space to < 0.1% R

- theory to follow - g

- precision = QFT x Compute
— Everything, faster and better...
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Shortest ML-intro ever

Fit-like approximation
- approximate fp(x) ~ f(x)
- no parametrization, just very many 6
- new representation/latent space 6

Applications
- applications all over experiment
- regression X — fa(x)
- classification x — fg(x) € [0,1]
- generation r~N —fy(r)

- conditional generation r ~ N — fy(r|x)

Architectures
- physics-aware questions and data representation
- symmetries, locality, etc
- accuracy, control, error bars?
- is LHC data images or language?
— Complexity a feature, not a problem




Network training

Encoding a transtition amplitude-squared
- expectation value from probability
(W) = [ dAapalx)

- internal representation
W = [aan [ db pal6) p(6lAun)

- training a generalization of §-probability
[ 90 pA16) pl61Awan) ~ | do p(410) q(0)



Network training

Encoding a transtition amplitude-squared
- expectation value from probability
W) = [ dAapAx)
- internal representation 6
A = [aan [ do pal6) p(olAvn)
- training a generalization of 6-probability
[ 90 PUAID) p(61Ain) ~ [ d0 pAI0) a(0)
- similarity from minimal KL-divergence
q(9)
Dxi[q(8), p(0] Ayain z/de 0) log —————
k[(6), P(0] Atrain)] q(0) log 201 Avar)

p— q(e) (Atraln)
= [ a0 a0) 05 GRS
q(9)

—/d9 q(0) Ing(Atrain|9)+/d9 q(0) |og;W 4
— Simplification: likelihood + regularization + dropout
Lann = — /d9 q(0) log p(Auain|0) + Dk [q(0), p(8)]

— (Ag — Atrain)2 +c(6 — 90)2




ML in experiment

TOp tagging [classification, 2016-today]

i [ —
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ML in experiment

Top tagging (cassification, 2016-today]
- *hello world’ of LHC-ML ... !
- end of QCD-taggers .
- ever-improving  [Huiin Qu] *
— Driving NN-architectures ;
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Particle flow  [2020-today]

7
mother of jet analyses %
55
- combining detectors with different resolution "
. . 33
- optimality the key :3

— Modern jet analysis basics '

Progress towards an improved particle flow algorithm
Towards a Computer Vision Particle Flow * at CMS with machine learning
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ML in phenomenology

Parton densities  [NNPDF, 2002-today]
- pdfs without functional bias and full uncertainties
- precision and calibrated uncertainties
— Drivers of ML-theory

The Path to N°LO Parton Distributions
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ML in phenomenology

Parton densities [NNPDF, 2002-today]
- pdfs without functional bias and full uncertainties
- precision and calibrated uncertainties
— Drivers of ML-theory

The Path to N°LO Parton Distributions

NNPDE €,

g luminasity a9 luminosity
. Ve1aTeV 12 Vs laTe
H 3 WDRAO B0 o0 | 3 5 NNPDF4.0 N3LO MHOU
10 B3 NNPDFAONNLO noMkoU | 2 120 5 NNPDF4.0 NNLO MHOU
£1ss 5 KNFDFA0 NLO no MHOU =5 NNPDF4 0 ML HsOL
F110 -

it
me(Gev)

3
6

Ultra-fast event generators  [sherpa, MadNIS, MLHad]

- event generation modular

- improve and replace by ML-modules
- I - |

— Beat state of the art 4 ... @3 TV)
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ML in theory

Optimizing integration paths f(invertivle networks]

s . 12120 0

Targeting multi-loop integrals with neural networks

- find optimal integration paths
- learn variable transformatior ‘
— Theory-integrator ‘
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2 | s i Numerical evaluations of Feynman inegrals often proceed via  deformation of the




ML in theory

Optimizing integration paths f(invertivle networks]
sccims 12,120 202

Targeting multi-loop integrals with neural networks

- find optimal integration paths
- learn variable transformatior ‘

Magerys®, Emilio Vill",Stephen P Jones',

— Theory-integrator
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Numerical evaluations of Feynman inegrals often proceed via  deformation of the

in o, They can lead to a significant gain in

Navigating string landscape  [reinforcement learning]
- searching for viable vacua
- high dimensions, unknown global structure
— Model space sampling Rt Atcoritans ot Moot Loaming.

Figure 1: Lefi: Cluster structure in dimensionally reduced flux samples for RL and 25 GA runs (PCA
on all samples of GA and RL). The colors indicate individual GA runs. Right:

(input) values (N and Vs respectively) in relation t0 principal components for a PCA fit of the
individual output of GA and RL.




Theory for ML

SCALING LAWS IN JET CLASSIFICATION

Scaling laws for classification networks [statistical learning]

- networks are complex systems
- training as statistical process

Top vs QCD jet power law plus floor
— Now solving problems — o

—— EFP fit (ar = 0.31£0.02, C= 0,190 % 0.005) Collective variables ?f neural nellworks: ‘empirical time
— LOTHt, (ar=0.19%0.02, C=013%0.02) evolution and scaling laws
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‘Training set size




Theory for ML

SCALING LAWS IN JET CLASSIFICATION

Scaling laws for classification networks statistical learning]

networks are complex systems
- training as statistical process

Anstiact

Top vs QCD jet power law plus floor
— Now solving problems . — owvenee
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Extrapolating transformers
- train on QCD jet radiation

learn to generate universal patterns
— EXtrapOIatiOn at Work Extrapolating Jet Radiation with Autoregressive Transformers

‘Anja Butter'2, Frangois Charton’, Javier Marifio Villadamigo',
‘Ayodele Ore?, Tilman Pleha’, and Jonas Spinner’

Submission

1ot — Truth 1 nsticu i Theorische Physik, Universit Heidelberg, Ger:
—— Truncated 2 LPNHE, Sohonne Univrsie, Unverse Pari i, NS/, o, France
3 Mea FAIR, CERMICS - Ecole ds Ponis
aWR), U Heidelberg, Germany
F]
S102 December 17, 2024
g Abstract
S
Z10® Generative networks are an exciting (ol for st LHC evnt genraton Usully they
are used to generate configurations with a fixed number of particles. Autoregressive
partices, very much
inline wih h physes o QD ot acdatin: Weshow how hey can e 3 fcoised
107
i cxvapolation bootraping wreming daa and aiing with modihcntons of e
T2 3 4 5 6 7 8 likelihood loss can be used.

Jet multiplicity mj; [GeV]




Amplitude regression

An IPPP story...

- 99 — ZZ [Bishara & Monull (2019)] — BDTs as a start

- ete™ — 5jets [Badger, Bullock (2020 — ensembles and K-factors

- 99 — 7v9(9g) [Aylett-Bullock, Badger, Moodie (2021)] — Speed gain 104

- ete™ — 5jets [maitre & Truong (2021)) — Catani-Seymour coefficients

- ete™ — 5 [maitre & Truong (2023 — antenna functions

- 99 — vv9(g) (Badger+Heidelberg (2024] — boOSted training

. ﬁH NNLO tests [Breso, Heinrich, Magerya, Olsson] — aCe for best performance




Amplitude regression

An IPPP story...
- 99 — ZZ [Bishara & Monuil (2019)] — BDTs as a start
- ete™ — 5jets [Badger, Bullock (2020)) — ensembles and K-factors
- 99 — vv9(g)  [AvlettBullock, Badger, Moodie (2021)] — Speed gain 10%
- efe~ — 5jets [maitre & Truong (2021)] — Catani-Seymour coefficients
- efe™ — 5 |Maitre & Truong (2023) — antenna functions
- 99 — 7v9(9) [Badger+Heidelberg (20241 — boOSted training
- ttH NNLO tests  [Breso, Heinrich, Magerya, Olsson] — Face for best performance

Learned uncertainties [Bani, Emer, Favaro, Haussmann, TP, Winterhalder]
- systematic: (added) noise, expressivity, data representation

learned by heteroscedastic loss and BNNs

Lo . L 0.4 —— Det-DSI
- statistical: too little training data —  BNN-DSI
learned by BNN or repulsive ensembles 03 L —— Detl
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Amplitude regression

An IPPP story...

- 99 — ZZ [Bishara & Monuil (2019)] — BDTs as a start

- ete™ — 5jets [Badger, Bullock (2020)) — ensembles and K-factors

- 99 — vv9(g)  [AvlettBullock, Badger, Moodie (2021)] — Speed gain 10%

- efe~ — 5jets [maitre & Truong (2021)] — Catani-Seymour coefficients

- efe™ — 5 |Maitre & Truong (2023) — antenna functions

- 99 — 7v9(9) [Badger+Heidelberg (20241 — boOSted training

- ttH NNLO tests  [Breso, Heinrich, Magerya, Olsson] — Face for best performance

Learned uncertainties [Bani, Emer, Favaro, Haussmann, TP, Winterhalder]

- systematic: (added) noise, expressivity, data representation
learned by heteroscedastic loss and BNNs
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ATLAS calibration

Energy calibration with uncertainties [ATLAS + Vogel, 2412.04370]

- interpretable calorimeter phase space x
- learned calibration function
REW O 1 ARENN ) & E®™(x)
(x) (x) = E"'T(x)
- uncertainties:  noise in data
network expressivity
data representation ...



ATLAS calibration

Energy calibration with uncertainties [ATLAS + Vogel, 2412.04370]

- interpretable calorimeter phase space x

- learned calibration function

REW O 1 ARENN ) & E®™(x)
(x) (x) =~ E"T(x)

- uncertainties:  noise in data

network expressivity

data representation ...

Understand (simulated) detector

ATLAS Simulation Internal
V5 = 13TeV antikr R = 0.4 EMTopo jets.

Topo-clusters with

J T JES JES| < g g0
ATLAS Simulation Internal o0 2066V, Iyi®| <2, EG; > 300MeV
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PIES > 20GeV, [y55] < 2, E? > 300Mev
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— Equivariant transformer CFM...

Generative Al

Simulations, MadNIS, calorimeters,...

- learn phase space density

fast sampling Gaussian — phase space
- Variational Autoencoder

— low-dimensional physics

- Generative Adversarial Network
— generator trained by classifier

- Normalizing Flow/Diffusion

— (bijective) mapping

- JetGPT, VIiT

— non-local structures

- Equivariant L-GATr

— Lorentz symmetry for efficiency

forward

Neural classifier AUC

LEEE —ry
L --®-- MLP
\\ Transformer
0.9 \  —4— LGATr
‘\
\
\
\
\\
0.8 =
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ti+0j
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Number of training samples

[Maitre, Ngairangbam, Spannowsky....]

scattering
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Generative Al with uncertainties

Bayesian generative networks  [geliagente, Haussmann, Luchmann, TP]

- network weight distributions for density

- sampling phase space
events with error bars on weights

- learned density & uncertainty
reflecting network learning?

— Generative networks like fitted densities




Generative Al with uncertainties

Bayesian generative networks  [geliagente, Haussmann, Luchmann, TP]

- network weight distributions for density

- sampling phase space
events with error bars on weights

- learned density & uncertainty
reflecting network learning?

— Generative networks like fitted densities

Z + 1 jet exclusive

—— Reweighted

Z+jetS events [Heimel, Vent..]

- per-cent accuracy on density
- statistical uncertainty from BNN
- systematics in training data

1 p'ry/" — 15 GeV 2
w=1ta 100 GeV

sampling a conditionally
— Precision and uncertainty control

0 50 100 150
1 [GeV]




Controlling generative Al

Compare generated with training data

- regression accuracy A = (Agata — Ao)/Adata

- harder for generation, unsupervised density
classify training vs generated events D(x)
learned density ratio [Neyman-Pearson)
D(Xi) pdata(xi)

w(xi) = T=D(x)  Pmoel(X)

— Test ratio over phase space




Controlling generative Al

Compare generated with training data

- regression accuracy A = (Agata — Ao)/Adata

- harder for generation, unsupervised density
classify training vs generated events D(x)
learned density ratio [Neyman-Pearson)

wix) = Dlxi)  _

pdata(xi )

1 — D(x;)
— Test ratio over phase space

Progress in NN-generators
- any generative Al task
- compare different architectures
- accuracy from width of weight distribution
- tails indicating failure mode
— Systematic performance test

Normalized

Prmodel (Xi)

100

10!

1072

1078

VLD
CFM
TraCFM




Transforming LHC physics

Number of searches

- optimal inference: signal and background simulations
- CPU-limitation for many signals?

Optimal analyses
- theory limiting many analyses
- include predictions not in event generators

Public LHC data
- common lore:
LHC data too complicated for amateurs

- in truth:
hard scattering and decay simulations public
BSM physics not in hadronization and detector

— Unfold to suitable level

forward

N
-

scattering decay QCD shower detectors

<
«

inverse




ML-Unfolding

Basic structure (sutter, kéthe, TP, Winterhalder]

- four phase space distributions

unfolding inference
Psim (Xpan) >  Punfold (Xpart)
Pp(xreco |Xpar1)J IP(Xpan [xreco)
forward inference
Psim (Xreco) Pdata(Xreco)

- learn conditional probabilities from (Xpart, Xreco) [forward-inverse symmetric]
— ML for unbinned and high-dimensional unfolding?



ML-Unfolding

Basic structure [sutter, kéthe, TP, Winterhalder]

- four phase space distributions

unfolding inference
Psim(Xpart)  ————  Punfold (Xpart)
p(xreco | Xpart) J TP(Xpan [xreco)
forward inference
Psim (Xreco) Pata (Xreco)

- learn conditional probabilities from (Xpart7 Xreco) [forward-inverse symmetric]
— ML for unbinned and high-dimensional unfolding?

OmniFold [Andreassen, Komiske, Metodiev, Nachman, Thaler + ATLAS]

- learn Pgim(Xreco) <+ Pdata(Xreco)  Neyman-Pearson] Z [arcas T, o o
. & 2 i A > 200 GV
- reweight Pgim (Xpart) — Punfold (Xpart) g B 56
=
"8 10% aa %
. =
classifier weights - ==
Psim (Xpart) Punfold (Xpart) - -
e
pull/push weights
£15
e . \5 1.0
classifier weights S, and S
Psim (Xreco) Pdata (Xreco) = 05 . . . . .
) 1 2 5 6

— Z+jets in 24D  (atLas]




Unfolding top decays

A challenge [Favaro, Kogler, Paasch, Palacios Schweitzer, TP, Schwarz]

- first measure m; in unfolded data
then unfold full kinematics

- model dependence: simulation ms vs data my

Psim (Xpart | Ms) Punfoid (Xpart| Ms, My)

p(xreco |Xpan)J Tpmodel (Xpart |Xreco » Ms)

correspondence

Psim (Xreco| Ms) Pdata(Xreco| M)



Unfolding top decays

A challenge [Favaro, Kogler, Paasch, Palacios Schweitzer, TP, Schwarz]

- first measure m; in unfolded data
then unfold full kinematics

. complete 1raining bias Mg — Ms [too bad to reweight]
Psim (Xpart| Ms) Puntold (Xpart| Ms, 174

P(Xreco |Xpan)J Tpmodel (Xpart | Xreco ;Ms)

correspondence
Psim (Xreco | Ms) Pdata(Xreco |Mq)
1 weaken bias by training on ms-range

2 strengthen data by including batch-wise my ~ Mj; € Xreco




Unfolding top decays

A challenge [Favaro, Kogler, Paasch, Palacios Schweitzer, TP, Schwarz]

- first  measure m; in unfolded data
then unfold full kinematics

- complete training bias my — Ms  too bad to reweight]
Psim (Xpart | Ms) Punfold (Xpart| Ms a%)
p(xreco |Xpar1)Jv ]pmodel (Xpart | Xreco »Ms)
Correspondence
Psim(Xreco|Ms) <~ Pdata(Xreco|Mq)

1 weaken bias by training on ms-range

2 strengthen data by including batch-wise my ~ Mj; € Xreco

Preliminary unfolding results [racrv

0.06 m, =171.5 GeV
- 4D for calibrated mass measurement

gen

—— unfolded
rec




Unfolding top decays

A challenge [Favaro, Kogler, Paasch, Palacios Schweitzer, TP, Schwarz]

- first  measure m; in unfolded data
then unfold full kinematics
- complete training bias my — Ms  too bad to reweight]

Psim (Xpart | Ms) Punfold (Xpart| Ms a%)

p(xreco |Xpar1)Jv ]pmodel (Xpart | Xreco »Ms)

correspondence

Psim (Xreco | Ms) Pdata(Xreco |Mq)

1 weaken bias by training on ms-range
2 strengthen data by including batch-wise my ~ Mj; € Xreco

Preliminary unfolding results [racrv = 003 m, =171.5 GeV gen
- 4D for calibrated mass measurement %m ::cfddEd
. 12D published data Eon
— CMS data next 0.00
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ML for LHC Theory

Developing ML for the best science

1 just another numerical tool for a numerical field
2 completely transformative new language
- driven by money from data science and medical research
- physics should be leading scientific Al
1000 Einsteins...

...improving established tools
...developing new tools for established tasks
...transforming through new ideas

— You can be the golden generation!

Modern Machine Learning for LHC Physicists

‘Tilman Plehn”; Anja Butter*?, Barry Dillon*,
Theo Heimel", Claudius Krause*, and Ramon Winterhalder”

“ Institut fiir Theoretische Physik, Universitit Heidelberg, Germany
¥ LPNHE, Sorbonne Université, Université Paris Cité, CNRS/IN2P3, Paris, France
© HEPHY, Austrian Academy of Sciences. Vienna, Austria
4 CP3, Université catholique de Louvain, Louvain-la-Neuve, Belgium

March 19, 2024

Abstract

fast, bullying its way into our numerical tool box. For young

researchers it s erucial p:
range of L bt
enthusiasm for machine learning to relevant applications. They sart with an LHC-specific motivation and a non-standard

cation, andiinve
problems. Tw themes defining much of the discussion are well-defined loss functions and uncertainty-aware networks.
As part of the applications, the notes include some aspects of theoretical LHC physics. All examples are chosen from
paricle physics publications of the last few years

2211.01421v2 [hep-ph] 17 Mar 2024


http://www.thphys.uni-heidelberg.de/~plehn/pics/modern_ml.pdf
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