

Black Hole States

ROBERTO EMPARAN ICREA+ICCUB UK THEORY MEETING - DURHAM 16 DECEMBER 2024 WITH ANA CLIMENT JAVIER M. MAGÁN MARTÍN SASIETA ALEJANDRO VILAR LÓPEZ

> ARXIV 2401.08755 PRD 109 086024 (2024)

$$S = \frac{A}{4G\hbar}$$

and Black Hole states

Counting states – but not black holes

$$S = \frac{A}{4G\hbar}$$

from D-branes in String theory Strominger+Vafa 1996

Non-gravitating states that are not black holes

Counting states – but not black holes

Extremal BPS charged black hole

coupling

Susy protects number of states as coupling changes

Counting states – but not black holes

Fundamental string state

Neutral black hole

No susy protection, but smooth matching at transition string/BH

Black Hole states – what for?

- BH info paradox and recovery of information
- Experience of infalling observer
- BH interior and singularity

Need finite (non-perturbative) gravitational coupling – hard for String Theory esp w/out SUSY

Black Hole states – what kind?

- Horizonless non-singular microstate geometries: fuzzballs
- Bag-of-gold states with horizons and singularities

Completely different starting points, methods, and results—do they meet anywhere? BPS systems?

Black Hole states – what kind?

- Horizonless non-singular microstate geometries: fuzzballs
- Bag-of-gold states with horizons and singularities

NB: this talk won't always require AdS/CFT, but often useful

Black Hole states – what are they?

Microscopic pure states $|\Psi\rangle$ that are almost indistinguishable (for simple observables) from thermal state $\rho_{\rm th}$

 $\langle \Psi | \mathcal{O}(t) | \Psi \rangle \rightarrow \mathrm{Tr}(\rho_{\mathrm{th}} \mathcal{O}), \quad \langle \Psi | \mathcal{O}(t) \mathcal{O}(0) | \Psi \rangle \rightarrow \mathrm{Tr}(\rho_{\mathrm{th}} \mathcal{O}(t) \mathcal{O}(0))$

Bags of gold

Bags of gold

Almost indistinguishable (for simple observables) from black hole

Bags of gold

Arbitrarily many internal states $\gg e^{S}$??

Bags of gold

Arbitrarily many internal states $\gg e^{S}$??

Exterior can be entangled with arbitrarily many interior states

BH can store arbitrary amount of info

 \rightarrow no Page curve: BH info paradox

Two-sided

Constructing (and counting) BH states

Kourkoulou+Maldacena

Goel+Lam+Turiaci+Verlinde

Penington+Shenker+Stanford+Yang (PSSY)

Lin+Maldacena+Rozenberg+Shan

Chandra+Hartman

Boruch+Iliesiu+Lin+Yan

Balasubramanian+Lawrence+Magán+Sasieta

Climent+RE+Magán+Sasieta+Vilar-López

and many others

Quantum states of Gravity from GPI

The Gravitational Path Integral constructs Hilbert spaces of states

Marolf+Maxfield

- Define quantum states $|\Psi_a\rangle$
- Compute their products (overlaps) $\langle \Psi_a | \Psi_b \rangle$

Effective tool – no ultraviolet detail

Surprisingly powerful but very peculiar

Bag-of-gold states = Bogs

Fully gravitational picture

Extremely universal – charge, rotation, susy or not, quantum corrections

Very general argument that Bogs are not orthogonal independent states

Can be realized within AdS/CFT, but basic Bog idea is more general

Quantum States from Path Integrals

FROM QUANTUM FIELD THEORY TO EUCLIDEAN QUANTUM GRAVITY

Amplitudes from Path Integral (PI)

$$\langle \phi_2 | e^{-\tau H} | \phi_1 \rangle = \int_{\phi(0)=\phi_1}^{\phi(\tau)=\phi_2} \mathcal{D}\phi \ e^{-I_E[\phi]}$$

Cutting the PI: State preparation

$$|\Phi\rangle = |\phi(\tau)\rangle = e^{-\tau H} |\phi\rangle$$

State overlaps

Thermal states

Imaginary time periodicity

$$\mathcal{D}\phi \ e^{-I_E[\phi]} \phi(0) = \phi(\beta)$$

$$= \sum_{i} \langle E_i | e^{-\beta H} | E_i \rangle$$
$$= \operatorname{Tr} e^{-\beta H}$$

Thermofield Double State – TFD

Cut open the path integral

$$|\text{TFD}\rangle = \frac{1}{\sqrt{Z}} \sum_{i} e^{-\beta H/2} |E_i\rangle_L \otimes |E_i\rangle_R$$

Maximally entangled state

Gravitational Partition Function

$$Z[\beta] = \int_{g(0)=g(\beta)} \mathcal{D}g \ e^{-I_{EH}[g]}$$

$$g(0) = g(\beta)$$

$$f \to i\tau$$

$$\times S^{d-2}$$
Euclidean black hole

Black Magic

ſ

4*G*

- $I_{EH}[g_{cl}]$ = Euclidean action of *classical* field configuration: zero-loop
- Not a trace over states: Trace = sum over all states running in a loop: one-loop contribution
- <u>Not a sum over microstates</u> but still gives non-zero & correct S = A/4G•

Gravitational Partition Function in AdS

Thermal quantum states from cut GPI

Black Hole as Thermofield double

Maldacena 2001

Thermofield double

$$|\text{TFD}\rangle = \frac{1}{\sqrt{Z}} \sum_{i} e^{-\beta H/2} |E_i\rangle_L \otimes |E_i\rangle_R$$

A specific (micro)state of the dual CFT

Dual geometry has a horizon and a singularity

More states

Introduce matter inside black hole

Heavy enough to backreact on geometry: enlarge interior

Bog states

Interior bang/crunch cosmology

Heavy-shell states

Shell close to the (would-be) boundary – little sensitivity to bulk black hole

Computing

STATE OVERLAPS FROM WORMHOLES: UNIVERSALITY & STATISTICS

State overlaps

Too many states?

$$G_{ij} = \left\langle \Psi_i \middle| \Psi_j \right\rangle = \delta_{ij}$$

$$\delta_{ij}$$
 m_i

Infinite family of orthogonal states

$$\dim(\mathcal{H}_{BH}) = \infty !?$$

bag-of-gold problem

Products with Wormholes

Wormholes \Rightarrow Statistical states

$$\overline{G_{ij}} = 0 \text{ for } i \neq j \qquad \qquad = 0 \qquad \text{Not } \langle \Psi_i | \Psi_j \rangle = 0$$
$$\text{but } \overline{\langle \Psi_i | \Psi_j \rangle} = 0$$
$$\overline{G_{ij}G_{ji}} \neq 0 \text{ for } i \neq j \qquad \qquad \neq 0$$

Bags of gold are *never* orthogonal

Moments of *G*

$$\frac{1}{G_{i_1 i_2} G_{i_2 i_3} \dots G_{i_n i_1}} = \frac{Z(n\beta, \mu_I)^2}{Z(\beta, \mu_i)^{2n}}$$

Heavy-shell universality

Depends only on BH properties

Moments

From grand-canonical to microcanonical BH window

$$\overline{G_{i_1 i_2} G_{i_2 i_3} \dots G_{i_n i_1}} \Big|_{\text{grcan}} = \frac{Z(n\beta, \mu_I)^2}{Z(\beta, \mu_i)^{2n}}$$

inverse Laplace transform
$$\overline{G_{i_1 i_2} G_{i_2 i_3} \dots G_{i_n i_1}} \Big|_{\text{micro}} = e^{-(n-1)\frac{2A}{4G_N}}$$

Counting

THE DIMENSION OF THE BLACK HOLE HILBERT SPACE

Dimension of set of states

$$F_{\Omega} = \{ |\Psi_i\rangle \in \mathcal{H}, i = 1, \dots, \Omega \}$$

Gram-Schmidt fails for BH heavy-shell states:

$$\overline{G_{ij}} = \delta_{ij}$$

Statistical counting

From statistical moments $\overline{G^n}$

Statistics forced by GPI wormholes

Borrow from random matrix techniques: resolvent

$$R(\lambda) = \operatorname{Tr}\left(\frac{1}{\lambda \mathbb{I} - G}\right) = \frac{\Omega}{\lambda} + \sum_{n=1}^{\infty} \frac{\operatorname{Tr} G^n}{\lambda^{n+1}} \longrightarrow d_{\Omega}$$

Penington+al (PSSY) 2019

How many states? $(\exp A/4G_N)^2$

We had
$$d_{\Omega} = \dim F_{\Omega} = \min\{\Omega, \dim \mathcal{H}\}$$

Resolvent for
$$\overline{G^n}$$
 gives $\overline{d_\Omega} = \min\{\Omega, e^{2A/4G_N}\}$

$$\Rightarrow \dim \mathcal{H} = e^{2A/4G_N}$$

Two-sided black hole: (CFT)²

Universality of dim $\mathcal{H} = (\exp S_{BH})^2$

Heavy shells can be constructed for

- Rotating and charged black holes
- Near-extremal, susy or not
- Quantum-corrected: log A and log T
- Higher-curvature theories

Heavy-shell states $\Rightarrow \dim \mathcal{H} = e^{2S_{BH}}$

Outlook

GPI RELOADED - WITH WORMHOLE STATISTICS

Gravitational Path Integral can do a lot

- Construct BH states and count their dimension
- Heavy-shell states $\Rightarrow \dim \mathcal{H} = e^{2S_{BH}}$
- Works for all cases where Gibbons-Hawking gives an entropy

Gravitational Path Integral is EFT

- The GPI is an effective tool with assumed (natural) rules
- Can this be derived from a microscopic theory?
- From what theory? Unlikely from (perturbative) string theory.

AdS/CFT?

Geometry and Randomness

- Wormholes are how gravity knows about finite dim \mathcal{H}_{BH}
- But they introduce intrinsic randomness
- Semiclassical BH geometry seems to need chaotic microscopics

Is this all one needs/can do for (non-susy) BH microscopics?

Thank you

Backup material

Near-extremal Microstates

near-extremal AdS₂ throat (JT Schwarzian)

In-throat microstates (one JT Schwarzian)

Sensitive to throat

Out-throat microstates (two Schwarzians)

Universal

Products from path integral

Partially Entangled Thermal States

PETS

$$|\Psi\rangle = \frac{1}{\sqrt{Z_1}} \sum_{i} e^{-\tilde{\beta}H/2} {\cal O} e^{-\tilde{\beta}H/2} |E_i\rangle_L \otimes |E_i\rangle_R$$

Goel+Lam+Turiaci+Verlinde

Partially Entangled Grand-canonical States

Add charge & rotation: **PEGS**

$$|\Psi\rangle = \frac{1}{\sqrt{Z_1}} \sum_{i} e^{-(\tilde{\beta} - \mu_I Q_I)H/2} \mathcal{O}e^{-(\tilde{\beta} - \mu_I Q_I)H/2} |E_i\rangle_L \otimes |E_i\rangle_R$$

Thermofield double = Eternal black hole

$$|\text{TFD}\rangle = \frac{1}{\sqrt{Z}} \sum_{i} e^{-\beta E_i/2} |i\rangle_L |i\rangle_R$$

Bell/EPR pair

 $|\Psi\rangle = \frac{1}{\sqrt{2}} (|0\rangle_L |0\rangle_R + |1\rangle_L |1\rangle_R)$

Correlation/connection, but no

communication between sides

Thermal behavior when only one

side is probed

Shell states

Particles in the bulk – a 'shell of dust' matter m

In AdS/CFT, operator \mathcal{O}_m inserted at boundary

Heavy-shell states

 $\langle \Psi_m | \Psi_m \rangle$ factorizes into $\approx Z_1[\beta, \mu_I]^2$

Shell does not affect horizon properties

Dependence on shell *m* drops out \rightarrow

universality

Heavy-shell Wormholes

$$=\frac{Z(2\beta,\mu_I)^2}{Z(\beta,\mu_i)^4}$$

unaffected by shell m_i

Multi-boundary Wormholes

How many states? $(\exp S_{BH})^2$

More generally

$\dim \mathcal{H} = e^{2S_{BH}}$

where S_{BH} is the value from Gibbons-Hawking Partition Function

Non-trivial consistency of the GPI

Bog states: remarks

Complete semiclassical analisis of overlaps needs multi-wormhole geometries, and weak interaction

Only possible for *large* Bogs with highly *localized matter*

Two-boundary wormhole

Five-boundary wormhole

Bog states: remarks

Microcanonical geometry? (better when BPS)

Complete semiclassical analisis of overlaps needs multi-wormhole geometries, and weak interaction

• Only possible for *large* Bogs with highly *localized matter*