Interfacing to specialist tools in EvtGen

Fernando Abudinén, John Back, Michal Kreps, Thomas Latham

MC support tools workshop

IPPP Durham June 27, 2024

EvtGen generator

- Package specialised for heavy-flavour hadron decays
 - Used as well inside simulation of b jets
- Contains about 130 decay models implementing specific dynamics of various decays
- Maintains detailed decay table with large number of explicit decays
 - Known decay branching fractions do not add up to 100%; Remainder is filled up by generating quark configurations and passing those to <u>Pythia8</u> for fragmentation
 - Fraction of decays passed to Pythia8 depends on particle (*b*-baryons rely more on Pythia8 than others)
- τ decays simulated using TAUOLA
- Final-state radiation (FSR) simulated using <u>PHOTOS</u> or <u>Sherpa's PHOTONS++</u> (new)

Example collision simulated by Pythia8

Dependencies across generators

- Extremely heavy "backward" dependencies of whole MC generators to support decay modelling
- Inconsistencies can result from mixing other (typically Pythia) hadron models into another generator's decay chains (and unresponsive to tunes)
- Example dependencies in EvtGen
 - Pythia
 - TAUOLA
 - PHOTOS
 - Sherpa

Interface between EvtGen and Pythia

- EvtGen asks Pythia to decay and hadronise quark configurations in some cases
- Nothing to be put into the event record before Pythia simulation
- Direct translation of EvtGen objects into Pythia event (and back)
- Needs interplay between generators (making sure to avoid double counting)
- Needs matching of particle properties and decay table.

Example from general Decay table

D	ecay Omeg	ja_b-					
#							
	0.05460	Omega_c0	e-	anti-nu_	e	PHSP;	
	0.05460	Omega_c0	mu-	anti-nu_	mu	PHSP;	
	0.02000	Omega_c0	tau-	anti-nu_	tau	PHSP;	
#	<pre># Hadronic Decays with Xi_c+</pre>						
	0.00600	Omega_c0	pi-			PHSP;	
	0.02200	Omega_c0	pi-	pi+	pi-	PHSP;	
	0.00055	Omega_c0	К-			PHSP;	
	0.02200	Omega_c0	D_s-			PHSP;	
	0.0011	DO	Xi-			PHSP;	
#							
	0.00047	Omega-	J/psi			PHSP;	
	0.00038	Omega-	psi(2	S)		PHSP;	
#		filli	ing out w	ith inclu	sives		
Θ	.68192 d	anti-u s cs_0	PYTHIA 43	3;			
Θ	.10910 d	anti-u d cs_0	PYTHIA 43	3;			
0	.02728 d	anti-u s su_0	PYTHIA 43	3;			
Е	nddecay						

Interface between EvtGen and PHOTOS

- Evtgen decay tree (particle with daughters) translated into HEPMC event (and back)
- PHOTOS translates HEPMC event internally (and back)
- PHOTOS core is not thread safe
- ⇒ Mutexed calls when making EvtGen thread safe
- ⇒ Major limitation in performance since almost every decay calls FSR simulation

Final-state radiation generators

Treat the effect of FSR as a correction to the Born-level decay rate (or cross section)

 $d\Gamma^{radiative} = d\Gamma^{Born} f(\Phi) d\Phi$ Φ : Phase-space of photons

• Example (oversimplified): neutral scalar $\rightarrow e^+e^-$ (single QED dipole)

Final-state radiation generators

Pythia QED

- Determines "best" set of dipoles (no genuine multipole effects)
- Works as parton shower evolution interleaved with QCD, MPI, ...

YFS – Yennie-Frautschi-Suura 1961 (basis for PHOTOS, Herwig, Sherpa's PHOTONS++)

- Takes full (multipole) soft interference effects into account
- Scalar QED, no spin dependence (but taken into account via ME corrections)
- Adds a number of photons to final state with predetermined kinematics (no interleaving)

Vincia QED Kleiss-Verheyen 2017, Brooks-Verheyen-Skands 2020

- Takes full (multipole) soft interference effects into account
- Not limited to scalar QED (includes spin dependence)
- Works as parton shower evolution based on antenna approximation (can be interleaved)

Sherpa's PHOTONS++ for FSR

- <u>PHOTONS++</u> in <u>Sherpa</u> can simulate emission of soft photons based on YFS approximation (mode 1)
- If switched on also hard photons based on collinear approximation (mode 2), with
 - Approx. matrix-element corrections (mode 20) or
 - Exact matrix-element corrections (mode 21)
- Using option 1, observed fewer hard photons with respect to PHOTOS (note that PHOTOS has matrixelement corrections implemented)
- Generally good agreement with PHOTOS using options 20 and 21
- ⇒ Will enable user to switch between options for systematic studies

A word on timing

- Compare simulation time using $J/\psi \rightarrow e^+e^-$ decay as benchmark
- \Rightarrow Collinear singularities enhanced due to small electron mass

- \Rightarrow Good precision/time trade-off for option 20 (will use as default)
- \Rightarrow Potential speedup using Vincia or PHOTONS by about factor 4

86.48 %

Another word on timing

• Compare simulation time when simulating generic $\Upsilon(4S) \rightarrow B\overline{B}$

 \Rightarrow Benchmark for general use

 \Rightarrow No large difference between PHOTONS options in generic case \Rightarrow Potential speedup using Vincia or PHOTONS by about factor 2

Interface between EvtGen and Sherpa

- Included dependency with Sherpa into EvtGen
- Developed EvtGen ↔ Sherpa interface (support Sherpa 2.x.x releases)
- EvtGen particle with its daughters translated into Sherpa blob (and back)
- Updates Sherpa's KF_Table to include custom EvtGen's particles
- Included into master branch and part of next release
- A few aspects need to be ironed out/investigated
 - Use in multi-threaded environment
 - Photon rate in hadronic tau decays seems underestimated
 - Support virtual photon splitting (once Sherpa 3 is out)

Initialisation of afterburners

- For external dependencies EvtGen creates full Pythia/Sherpa objects
- Would be useful to initialise only needed objects (shower/soft-photon handler)
- Example: Sherpa's initialisation takes as much time as $\sim 10^4$ decay events
- Several initialised objects are not used

// Vector containing the configuration strings for Sherpa
// INIT_ONLY=6 intialises the Sherpa objects without launching simulation.
std::vector<std::string> m_configs{ "Sherpa", "INIT_ONLY=6" };

// Create instance and initialise Sherpa.
m_sherpaGen = std::make_unique<SHERPA::Sherpa>();
m_sherpaGen->InitializeTheRun(argv.size(), &argv[0]);
m_sherpaGen->InitializeTheEventHandler();

Ideas for future FSR generation

- FSR added by passing decay tree step-by-step (node-by-node) to the FSR generators
- Vincia QED shower (inside Pythia) currently being developed to simulate QED radiation off hadrons
- Prototyped EvtGen ↔ Vincia interface using existing Pythia dependency (step-by-step)
- Idea exists to propagate full decay chain to Vincia to simulate radiation standalone
- Could simulate interference and resonance interleaving effects

Plugins for au decays

- EvtGen ↔ TAUOLA interface based on HEPMC
- Spin-state information of τ not propagated
 - TAUOLA reconstructs spin info from ancestors
 - Needed for analyses sensitive to τ polarization
- Simulation of \(\tau\) decays with spin-state propagation possible with PYTHIA8 using HME (helicity-matrix element) amplitude model
- Prototyped EvtGen ↔ Pythia interface propagating spin-density matrix
- Generalisation of helicity/spin basis conversion has been showstopper

Decay table and custom IDs

- General Decay table does not consider uncertainties in branching fractions
- Each user can have custom general Decay table
- Currently no possibility to provide uncertainty or weighting variation for decays
- Challenges: Inconsistencies, PDG BFs not adding up to 1, theory uncertainties (form factors, etc)
- Particle ID standards: some particle IDs used in EvtGen are outside the standard range

Example from general Decay table

Decay B0										
# # b -> s gamma #										
0.0003118 Xsd #	gamma	BTOXSGAMMA	2	;						
Decay Xsd 1.00000 d anti-s PY Enddecay	THIA 42;									

Summary and discussion

EvtGen

- FSR: introduced new alternative using Sherpa's PHOTONS++
- FSR: envisaged plans for full decay-chain propagation with Vincia
- τ decays: explore Sherpa as alternative, check interface between HERWIG EvtGen

General

Possibility of a "bidirectional" API between main generator and specialist afterburners?