

Neutrino Interactions in the Few-GeV Regime

Lu, Xianguo 卢显国 University of Warwick

YETI School 2024—The 3 *Neutrino* Problem IPPP, Durham 2024 July 31

Outline

- 1. Experimental Techniques
 - a. Standard Model and massive neutrinos
 - b. GeV neutrino experiments
 - c. Detectors
 - d. MINERvA measurements
- 2. Neutrino Scattering and Nuclear Structure
 - a. Neutrino-nucleon interactions
 - b. Nuclear models
 - c. Neutrino-nucleus interactions
- 3. TKI Phenomenology
 - a. Definitions
 - b. Measurements and interpretations

Questions for *Quiz* and *Homework* are prepared. Number of * (0-3) indicates the difficulty.

Focus of this lecture

- Survey of experimental techniques to inform what we can *do*.
- Introduction to theory to explain what we are dealing with.
- First experience with one of the current trends in the field via phenomenology.
- Overall, to provide a taste of understanding and guessing to ease your Day One in the field.

Great lectures on neutrinos with focus on interactions if you want to dive into the subject

- 1. Kevin McFarland, University of Rochester, <u>Neutrino interactions</u>, Center for Excellence in Particle Physics (CCEPP) School, 25-26 August 2021
- 2. Steve Boyd, University of Warwick, *Neutrino Physics*, *Warwick Week* Lecture, 2024

Great text on nuclear, particle, and neutrino physics

- 1. Giunti, C., Kim, C. W. (2007). *Fundamentals of Neutrino Physics and Astrophysics*. United Kingdom: OUP Oxford.
- Povh, B., Rith, K., Scholz, C., Zetsche, F., Rodejohann, W. (2015). *Particles and Nuclei: An Introduction to the Physical Concepts*. Germany: Springer Berlin Heidelberg. 7th Ed.
- 3. Donnelly, T. W., Formaggio, J. A., Holstein, B. R., Milner, R. G., Surrow, B. (2017). *Foundations of Nuclear and Particle Physics*. United Kingdom: Cambridge University Press.
- 4. Zuber, K. (2020). *Neutrino Physics*. United Kingdom: CRC Press. 3rd Ed.
- 5. Rubbia, A. (2022). *Phenomenology of Particle Physics*. United Kingdom: Cambridge University Press.

Part 1: Experimental Techniques

Lu, Xianguo 卢显国, Warwick: Neutrino Interactions in the

Few-GeV Regime

Elements

(Mendeleev, 1869)

Quiz: How many neutrons does argon have?

Atom

1 Å = 100 pm

Source: https://en.wikipedia.org/wiki/Sphere (venue)

Recall what we can do with atoms (how long did it take us?)
Can we probe inside the nuclei? If yes, how?
Can we manipulate the nucleus and nucleons?

... In the Three-Body-Problem (三体) universe, it would mean that we could make Droplets (水滴).

2024 July 31

Fundamental matter in our current world view: Standard Model

Neutrinos in SM

- I. Electric charge = 0
- 2. Mass = 0

3. Have flavours

In **nature**, neutrino mass gap leads to oscillations.

In **practice**, neutrino mass can be neglected in neutrino interactions.

Neutrino Mass

Beyond Standard Model Standard Model Pontecorvo-Maki-Nakagawa-Sakata ν_e PMNS matrix u_{μ} \pm ν_2 ν_3 **Mass Ordering** Δm^2 leads to neutrino oscillations Normal Inverted Mark Thomson, Particle Physics lecture notes

PMNS Matrix

 $\theta_{13} \neq 0 \rightarrow \delta_{CP}$ can be observed

 θ_{12} : mixing between ν_1 and ν_2

 θ_{23} : mixing between ν_{μ} and ν_{τ}

 θ_{13} : if 0, effective 2 flavour mixing

$$\begin{pmatrix} \nu_e \\ \nu_\mu \\ \nu_\tau \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} \nu_1 \\ \nu_2 \\ \nu_3 \end{pmatrix}$$

$$\theta_{13} = 0$$

2-flavor oscillation

$$v_{\beta}$$
$$P(v_{\alpha}) + P(v_{\beta}) = 1$$
$$v_{\alpha}$$

Antineutrinos

Oscillation as a function of *time* line-in-**line** → same trivia

3-flavor oscillation

Antineutrinos

Oscillation as a function of *time* line-in-**plane** \rightarrow CP-violation possible

$$PMNS \\ \begin{bmatrix} \nu_{e} \\ \nu_{\mu} \\ \nu_{\tau} \end{bmatrix} = \begin{bmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu1} & U_{\mu2} & U_{\mu3} \\ U_{\tau1} & U_{\tau2} & U_{\tau3} \end{bmatrix} \begin{bmatrix} \nu_{1} \\ \nu_{2} \\ \nu_{3} \end{bmatrix} \\ Trimaximal mixing \\ -maximally CP-violating \\ (|U_{i\alpha}|^{2}) = \begin{bmatrix} \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \end{bmatrix} \\ Frightarrow (Viscore ($$

How Nature might work: PDG 2018 δCP = 248° 0.003 GeV ve 0 km (0%) $|U_{e1}|$ $|U_{e2}|$ $|U_{e3}|$ Anti-ve $|U_{\mu 2}|$ 0 km (0%) $|U_{\mu 3}|$ $|U_{\mu 1}|$ $|U_{\tau 2}|$ $|U_{\tau 3}|$ $|U_{\tau 1}|$ $0.801 \dots 0.845$ $0.513\ldots 0.579$ $0.143 \ldots 0.156$ $0.631 \dots 0.778$ $0.233\ldots 0.507$ $0.461 \ldots 0.694$ = $0.261 \dots 0.526 \quad 0.471 \dots 0.701$ 0.611 ... 0.761

Why Study GeV (= atmospheric + accelerator)? GeV

See single/pair/cluster nucleons Models (+quess/intuition)

Physical reasons

Neutrino for *CP*-violation □ Need to detect *accelerator* neutrinos at O(1) GeV

GeV-neutrinos also relevant for

- Mass hierarchy measurement via atmospheric neutrino oscillations
- Background to rare event searches

Technical reasons

Difficult to *control*

✓ *Control*: we know how good/bad things are. Quiz: Here is a model 1 year = $\pi \times 10^{\# days of a week}$ seconds It is wrong by a few __%. C: 0.1 A: 10 B: 1

Atmospheric Neutrinos

Discovery of neutrino oscillations

Kajita, Nobel Lecture

How to obtain a controlled sample of neutrinos?

How to obtain a controlled sample of neutrinos?

Let's start from π decays

How to obtain a controlled sample of neutrinos?

Let's start from π decays

How to obtain a controlled sample of neutrinos?

Let's start from π decays

"β decay" of energetic collision products (mostly ν_{μ} from π) Neutrino beams from accelerators → Directional Charge selection on π → High purity ν or $\bar{\nu}$ beams

Let's start from π decays

From energy, momentum conservation

 $E_{\mu} = \frac{m_{\pi}^2 - m_{\mu}^2}{2(E_{\pi} - p_{\pi}\cos\vartheta)}$

Off-axis (OA) technique → Narrow-band beams D. Beavis, et al., P889: long baseline neutrino oscillation experiment at the AGS, Report No. BNL-52459, April, 1995

Accelerator Neutrino Experiments

Lu, Xianguo 卢显国, Warwick: Neutrino Interactions in the Few-GeV Regime

22

T2K off-axis near detector (ND280)

T2K off-axis near detector (ND280)

P0D: Pi0 Detector contains H_2O targets

Tracker:

FGD: Fine-Grained Detector

 plastic scintillator C₈H₈
 target
 2. C₈H₈ + H₂O target
 TPC

ECAL:

surrounding P0D and tracker

Side Muon Range Detector: in magnet yokes

 \rightarrow

- constrain beam flux and cross section for oscillation analysis
- stand-alone neutrino interaction measurements

Water Cherenkov detector

50 kt water Cherenkov □ 11129 20-inch PMTs in inner detector; 1885 8-inch PMTs in outer veto detector time and amplitude of Cherenkov light

Quiz:

Assuming height=diameter, what is the diameter of the 50kt-water tank in meters?

Lu, Xianguo 卢显国, Warwick: Neutrino Interactions in the

c) Kamioka Observatory, ICRR(Institute for Cosmic Ray Research), The University of Tokyo

Water Cherenkov detector

Homework: Calculate the Cherenkov light threshold (in total energy, kinetic energy, and momentum) for e, μ , π^+ , K⁺, p, τ .

2024 July 31

Accelerator Neutrino Experiments

Accelerator Neutrino Experiments

Detector considerations

✤ v_{μ} flux*: v_{μ} disappear, v_{e} appear

✤ Accelerator and atmospheric GeV-v experiments

Sensing v interactions

Homework: Calculate proton momentum for 10 MeV and 100 MeV kinetic energy.

Embedded in detector, incomplete particle information

- Tracking/Cherenkov threshold
- ✤ Angular acceptance

Detector

- Particle Identification (PID)
 - Neutrals

•••

Noise

Quiz: Air density at STP in kg/m³? What about water (in its usual liquid condition)?

A: 10³ B: 1 C: 10⁻³

Quiz: Density ratio between liquid air and water (at their own conditions)? What about polystyrene (a kind of plastics) vs. water?

A: 10 B: 1 C: 0.1

Tracking threshold (no momentum measurement possible below it)

- ~ few MeV for 10 bar gas
- ~ 10s MeV for liquid/solid

Plastic scintillator tracker

- □ Also *active target*
 - Tracking + calorimetry

Current role in studying ν interactions

□ Largest data set

Detector

Systematic investigation, cf. e.g. MINERvA, Eur. Phys. J. ST 230, 4243 (2021)

Time Projection Chamber (TPC)

Anode planes Anode plane waveforms Cathode plane Liquid argon volume Charged particle tracks ⊖→ $\Theta \Theta -$ Neutrino drift Time

Vermeulen, FERMILAB-THESIS-2021-05

Detector

Detector

DUNE

□ FD (Far Detector)

- LArTPC (Liquid Argon TPC)
- ✓ Mass-scalable (~10kt) for tracking + calo

Quiz: What is Earth's diameter in unit of DUNE's baseline?

A: 100 B: 50 C: 10

ProtoDUNE

Detector

LArTPC Demonstrator at CERN for DUNE FD

- □ Hadron beams of 0.3-7 GeV/c
 - ✤ 4.7 mm wire spacing (same as FD)
 - ✓ Versatile reconstruction in LAr

ProtoDUNE

Detector

LArTPC Demonstrator at CERN for DUNE FD

□ Hadron beams of 0.3-7 GeV/c

- ✤ 4.7 mm wire spacing (same as FD)
- Versatile reconstruction in LAr
- Exclusivity + beam energy, can "see" inside argon nuclei

Homework: If we need to have signals from at least 6 wires in LArTPC to reconstruct a proton track, what is the tracking threshold?

Exclusivity: to measure all final states (except nuclear remnant)

□ Why gas TPC? Why high pressure?

- ✤ Acceptance, tracking threshold
- Target mass

Raaf, TPC Mini Workshop

Hamacher-Baumann, Lu, Martín-Albo, Phys.Rev.D 102, 033005 (2020)

Lu, Xianguo 卢显国, Warwick: Neutrino Interactions in the Few-GeV Regime

Detector

□ Why gas TPC? Why high pressure?

- Acceptance, tracking threshold
- Target mass
- □ Why not pure hydrogen TPC
 - Bubble chamber: worse tracking
 - ✤ H₂ gas: not hydrogen-rich enough
- □ How rich is rich enough?
 - Element carrying as much hydrogen as possible: Carbon base C_xH_y

2024 July 31

 H_2

http://www.jmol.org/

□ Why gas TPC? Why high pressure?

- Acceptance, tracking threshold
- Target mass
- □ Why not pure hydrogen TPC
 - Bubble chamber: worse tracking
 - ✤ H₂ gas: not hydrogen-rich enough
- □ How rich is rich enough?
 - Element carrying as much hydrogen as possible: Carbon base C_xH_v
 - > Saturated, acyclic: Alkane C_nH_{2n+2}
 - \checkmark CH₄ most efficient H-carrier, but not the largest one

Hamacher-Baumann, Lu, Martín-Albo, Phys.Rev.D 102, 033005 (2020)

□ Why gas TPC? Why high pressure?

- Acceptance, tracking threshold
- Target mass
- □ Why not pure hydrogen TPC
 - Bubble chamber: worse tracking
 - H₂ gas: not hydrogen-rich enough
- □ How rich is rich enough?
 - Element carrying as much hydrogen as possible: Carbon base C_xH_y
 - Saturated, acyclic: Alkane C_nH_{2n+2}
 - ✓ CH₄ most efficient H-carrier, but not the largest one
 - Maximal partial pressure limited by vapor pressure
 - Theoretically hydrogen-richest mix at 10 bar: C_{3.93}H_{9.86}

= 17% C(CH₃)₄ (neopentane) + 35% iC_4H_{10} (isobutane) + 24% C₄H₁₀ (butane) + 24% C₃H₈ (propane)

Homework: Write down all (anti)neutrinohydrogen interactions whose final-state particles are all electrically charged.

Hamacher-Baumann, Lu, Martín-Albo, Phys.Rev.D 102, 033005 (2020)

ME: gigantic data sets!

Lu, Xianguo 卢显国, Warwick: Neutrino Interactions in the

Photo Credit: R. Hahn

 Scintillator bar (CH)
 3.3 cm base, 1.7 cm height

□ 3 ns timing resolution

MINERVA Another One One Aodule

3 views
 2.7 mm position resolution per plane

Non-magnetized

□ Muon momentum resolution (range + curvature) 8% @ 6 GeV/c

- □ Proton threshold 100 MeV K.E., momentum (by range) resolution 2% @ 1 GeV/c
- \Box π^0 momentum resolution ~20%
- □ High-energy charged π energy resolution by calorimetry $18\% + 8\% / \sqrt{E_{\pi}/\text{GeV}}$
- Can also detect neutrons

Neutrino-Electron Elastic Scattering

Well-understood SM process

 $\nu e \rightarrow \nu e$

Homework: Write down the Feynman diagram(s) for *v*-e elastic scattering.

- Beam flux prediction:
 - GEANT4+hadron production data
- in situ flux constrained by ve scattering [MINERvA, Phys.Rev. D93, 112007 (2016), Phys. Rev. D 100, 092001 (2019)]
 - ✤ reduced by ~ 10%
 - ✤ uncertainty near the peak reduced from 8% to 4%

Inverse Muon Decay

(Muon decay $\mu^- \rightarrow \nu_{\mu} + e^- + \bar{\nu}_e$) Another well-understood SM process $\nu_{\mu} + e^- \rightarrow \mu^- + \nu_e$ Inverse muon decay

New flux constraint method [MINERVA, Phys.Rev.D 104, 092010 (2021)]

Homework:

- 1. Write down the Feynman diagram(s).
- 2. What is the minimum neutrino energy for this process to happen (that is, the neutrino energy threshold)?
- 3. Can this technique constrain $\overline{\nu}_{\mu}$ flux?

2024 July 31

Lu, Xianguo 卢显国, Warwick: Neutrino Interactions in the

Few-GeV Regime

Kaon Production

K⁺ decay-at-rest signature 12.4 ns lifetime, kink, energy deposit

15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115

Module number

Lu, Xianguo 卢显国, Warwick: Neutrino Interactions in the Few-GeV Regime

20 10

-5 0 5 10

-5

Bound nucleons are moving—Fermi motion

Interactions while exiting, very often breaking up the nucleus—final state interactions (FSI)

- □ Proton *decay at rest* → K⁺ 105 MeV K.E.
- Nice kinematic signature with decay chain coincidence Or not?

Part 2: Neutrino Scattering and Nuclear Structure

Settings

- 1. Neutrino beam on at-rest nuclear target
 - Nucleus A, nucleon N
- 2. Only consider charged current (W-exchange)
- 3. Residual nucleus not detectable

Homework**: Explain $\sigma_{CC}^{\nu N} / \sigma_{CC}^{\overline{\nu} N} \simeq 2$ at high energy.

 \Box At high energy, v interacting with quarks, $\sigma \sim E_{v}$

Few-GeV Regime

Lu, Xianguo 卢显国, Warwick: Neutrino Interactions in the

2024 July 31

Source: http://www.wikihow.com/Pump-a-Spalding-Neverflat-Basketball

Homework*: Using isospin arguments (CG coefficients), show that the crosssection ratio between $\nu_{\mu}p \rightarrow \mu^{-}p\pi^{+}$, $\nu_{\mu}n \rightarrow \mu^{-}p\pi^{0}$, and $\nu_{\mu}n \rightarrow \mu^{-}n\pi^{+}$ is 9:2:1 (assuming \varDelta dominance).

Homework: Check the quantum numbers and quark contents of *∆* and N* on PDG (Google "pdg delta resonance"; navigate <u>https://pdg.lbl.gov/</u>).

- ◆ Besides ∆, there are also many other resonances, e.g. N resonances (N*)
- Non-resonant background: diagrams with the same initial and final states but without the intermediate resonance

Quiz: What is the momentum scale for 1 fm according to the uncertainty principle?

[eV] Atom 3.0 Nucleus 0 Na Atom 0.10 10⁻¹⁰m [MeV] Nucleus ρ [e /fm³] 3.0 0.05 Protons 0 and Neutrons ²⁰⁸Pb Nucleus 10^{-14} m [GeV] Proton 0.3 Quark 0 Proton 10⁻¹⁵m

Homework**: What charge is seen by neutrino CC scattering?

Electric charge density seen by *electron* scattering

0

Fermi gas

Nucleons need to "ladder up" the momentum space due to overlap of wavefunction in configuration space

All figures from Povh, et al. Particles and Nuclei

Shell model (no longer non-interacting gas)

- Mean field: each nucleon moving freely in a potential approximated for the sum of interactions with all other nucleons.
- Confining (radial-dependent) mean-field potential leads to energy levels

Table 6.1 Fermi momentum $P_{\rm F}$ and effective average potential *S* for various nuclei. These values were obtained from an analysis of quasi-elastic electron scattering at beam energies between 320 and 500 MeV and at a fixed scattering angle of 60° [12, 18]. The errors are approximately 5 MeV/*c* ($P_{\rm F}$) and 3 MeV (*S*)

Nucleus		⁶ Li	¹² C	²⁴ Mg	⁴⁰ Ca	⁵⁹ Ni	⁸⁹ Y	¹¹⁹ Sn	¹⁸¹ Ta	²⁰⁸ Pb
$P_{\rm F}$	(MeV/c)	169	221	235	249	260	254	260	265	265
S	(MeV)	17	25	32	33	36	39	42	42	44

Povh, et al. Particles and Nuclei

Free-moving \neq free, the potential makes the nucleon off-shell

$$E_{\rm N} = \sqrt{M_{\rm N}^2 + \vec{p}^2} + \epsilon$$

Spectral function

Probability density as a function of nucleon energy and momentum (or their equivalent)

Homework*: What would the spectral function look like if the proton is on-shell (as in Fermi gas).

²⁰⁸Pb spectral function represented by missing energy and missing momentum, using cross section data for the ²⁰⁸Pb(e, e'p)²⁰⁷Tl* reaction. _{Quint, PhD thesis, University of Amsterdam, 1988}

2024 July 31

Can not identify RES experimentally

Van Cuyck, PhD Thesis, Ghent University (2017)

R: radial position, M_p : mass

Final-state proton inside nucleus: *mass* evolves as it propagates out of the nucleus.

R: radial position, M_p : mass

Final-state proton inside nucleus: *mass* evolves as it propagates out of the nucleus.

R: radial position, p_p : momentum

Final-state proton in neutrino interactions: *momentum* evolves as it propagates out of the nucleus.

R: radial position, p_p : momentum

Final-state proton in neutrino interactions: *momentum* evolves as it propagates out of the nucleus.

Homework: In the GiBUU FSI movie:

- 1. * Calculate the physical time unit, i.e. how long is T=1 a.u.?
- 2. *** Locate the forbidden region. Explain its mechanism. What determines its boundary?

Part 3: TKI Phenomenology

Transverse Kinematic Imbalance (TKI)

Stationary free nucleon target

Missing energy

From Wikipedia, the free encyclopedia

[...]

 \vec{p}_{v}

neutrinos.^[1] In general, missing energy is used to infer the presence of non-detectable particles and is expected to be a signature of many theories of physics beyond the Standard Model.^{[2][3][4]}

[...]

hadron colliders.^[5] The initial momentum of the colliding partons along the beam axis is not known -

ΤKI

Multi-dimensional observation
Momentum (magnitude)
Angle
Asymmetry

Lu, et al., Phys.Rev.D 92, 051302 (2015) Lu, et al., Phys.Rev.C 94, 015503 (2016)

Transverse Boosting Angle $\delta \alpha_{T}$

Transverse Boosting Angle $\delta \alpha_{T}$ $ec{p}_{ ext{T}}^{\ell'}$ $ec{p}_{ ext{T}}^{\ell'}$ $\delta \vec{p}_{\mathrm{T}} = \vec{p}_{\mathrm{T}}^{\mathrm{N}} - \Delta \vec{p}_{\mathrm{T}}$ $\Delta p_{_{\mathrm{T}}}$ boosting outgoing hadron $\delta \vec{p}_{\rm T} = \vec{p}_{\rm T}^{\rm N} - \Delta \vec{p}_{\rm T}$ $\Delta p_{_{\rm T}}$ dragging outgoing hadron $\delta\phi_T$ $\delta \phi_{\rm T}$ $\vec{p}_{\mathrm{T}}^{\mathbf{N}}$ $\delta \vec{p}_{\mathrm{T}}$ $\delta \alpha_{\rm T}$ $\Delta E^{\rm N'} =$ $\Delta E^{\rm N'}$ =

FSI and momentum sharing with extra particlespion absorption2p2h

Emulated Nucleon Momentum p_N

[Furmanski & Sobczyk, Phys.Rev.C 95, 065501 (2017)]

ΤΚΙ: CCπ⁰

Surprising consistency!

TKI: FSI and 2p2h

 \succ

Neutrino Interactions in the Few-GeV Regime

- 1. Experimental Techniques
 - a. Standard Model and massive neutrinos: from elements to quark and leptons
 - b. GeV neutrino experiments
 - i. Neutrino production
 - ii. Neutrino detection
 - c. Detectors
 - i. Plastic scintillator tracker
 - ii. Liquid argon TPC
 - iii. High-pressure gas TPC
 - d. MINERvA measurements
 - i. Flux and detector
 - ii. Neutrino-electron elastic scattering, inverse muon decay, CC coherent production, and kaon production
- 2. Neutrino Scattering and Nuclear Structure
 - a. Neutrino-nucleon interactions: DIS, QE, and RES
 - b. Nuclear models: Fermi gas, shell model, and spectral function
 - c. Neutrino-nucleus interactions: nuclear currents and FSI
- 3. TKI Phenomenology
 - a. Definitions: transverse boosting angle and emulated nucleon momentum
 - b. Measurements and interpretations: $CC0\pi$ vs. $CC\pi^0$ and MINERvA vs. T2K

Quiz

- 1. How many neutrons does argon have?
- 2. Here is a model: 1 year = $\pi \times 10^{\# days of a week}$ seconds. It is wrong by a few __%. (A: 10, B: 1, C: 0.1)
- 3. Assuming height=diameter, what is the diameter of the 50kt-water tank in meters?
- 4. Air density at STP in kg/m³? What about water (in its usual liquid condition)? (A: 10³, B: 1, C: 10⁻³)
- 5. Density ratio between liquid air and water (at their own conditions)? What about polystyrene (a kind of plastics) vs. water? (A: 10, B: 1, C: 0.1)
- 6. What is Earth's diameter in unit of DUNE's baseline? (A: 100, B: 50, C: 10)
- 7. What is the momentum scale for 1 fm according to the uncertainty principle?

Homework

- 1. Calculate the Cherenkov light threshold (in total energy, kinetic energy, and momentum) for e, μ , π^+ , K⁺, p, τ .
- 2. Calculate proton momentum for 10 MeV and 100 MeV kinetic energy.
- 3. If we need to have signals from at least 6 wires in LArTPC to reconstruct a proton track, what is the tracking threshold?
- 4. Write down all (anti)neutrino-hydrogen interactions whose final-state particles are all electrically charged.
- 5. Write down the Feynman diagram(s) for v-e elastic scattering.
- 6. Inverse muon decay
 - 1) Write down the Feynman diagram(s).
 - 2) What is the minimum neutrino energy for this process to happen (that is, the neutrino energy threshold)?
 - 3) Can this technique constrain $\bar{\nu}_{\mu}$ flux?
- 7. ** Explain $\sigma_{\rm CC}^{\nu \rm N} / \sigma_{\rm CC}^{\bar{\nu} \rm N} \simeq 2$ at high energy.
- 8. Calculate the energy threshold of v_e and v_{μ} CCQE scattering on nucleons.
- 9. Check the quantum numbers and quark contents of ∆ and N* on PDG (Google "pdg delta resonance"; navigate <u>https://pdg.lbl.gov/</u>).
- 10. * Using isospin arguments (CG coefficients), show that the cross-section ratio between $\frac{1}{2}$
 - $\nu_{\mu} p \rightarrow \mu^{-} p \pi^{+}, \nu_{\mu} n \rightarrow \mu^{-} p \pi^{0}, \text{ and } \nu_{\mu} n \rightarrow \mu^{-} n \pi^{+} \text{ is } 9:2:1 \text{ (assuming } \Delta \text{ dominance).}$
- 11. ** What charge is seen by neutrino CC scattering?
- 12. * What would the spectral function look like if the proton is on-shell (as in Fermi gas).
- 13. In the GiBUU FSI movie:
 - 1) * Calculate the physical time unit, i.e. how long is T=1 a.u.?
 - 2) *** Locate the forbidden region. Explain its mechanism. What determines its boundary?

BACKUP

The New Impressive

0

Counting oscillated v

At *far detector*, interactions *cannot* be measured with *unknown oscillated flux*

v_e / \overline{v}_e interactions

 \Box $\delta_{\rm CP}$ requires ν_e and $\bar{\nu}_e$ appearance

- ✓ Suppress v_e and \bar{v}_e bkg in beams
- \Box Need v_e/\bar{v}_e interaction data
- $\Box v_{\mu}-A + \text{lepton universality constrains} \\ v_{e}-A \text{ to } 1^{\text{st}} \text{ order precision}$
- □ Oscillation requires 2nd order precision
 - Higher statistics and better-understood fluxes

Joint Autumn Meeting of nuSTORM and UK Muon Beams Collaboration London, 23-24 November, 2023

v_{ρ}/\bar{v}_{ρ} interactions

 \Box δ_{CP} requires ν_{e} and $\bar{\nu}_{e}$ appearance

✓ Suppress v_e and \bar{v}_e bkg in beams

 \Box Need v_e/\bar{v}_e interaction data

 $\Box v_{\mu}$ -A + lepton universality constrains ν_{ρ} -A to 1st order precision

□ Oscillation requires 2nd order precision

✓ Higher statistics and better-understood fluxes

 \Box v from STORed Muons (nuSTORM)

- $v_{\mu}/\bar{v}_e/\bar{v}_{\mu}/v_e$ fluxes from μ^{\pm} decays
- ✓ 1% or better flux precision

