FUTURE NEUTRINO EXPERIMENTS

Prof. N. McCauley University of Liverpool

FUTURE NEUTRINO EXPERIMENTS

- Neutrino physics has a number of unanswered questions.
 - Oscillation Physics
 - Mass
 - Dirac / Majorana
 - Astophysics
- I will focus on the future experiments for neutrino oscillations in this presentation
 - Three very large experiments are under construction and are due to start taking data "soon"
 - The age of precision neutrino measurements is about to commence

OPEN QUESTIONS IN NEUTRINO OSCILLATION PHYSICS

3

 $(m_{2})^{2}$

 $(m_1)^{-1}$

 $(m_2)^{\tilde{}}$

 $(\Delta m^2)_{sol}$

Neutrino mixing is characterised by the PMNS matrix.

 $\mathbf{U}_{PMNS} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \theta_{23} & \sin \theta_{23} \\ 0 & -\sin \theta_{23} & \cos \theta_{23} \end{pmatrix} \begin{pmatrix} \cos \theta_{13} & 0 & \sin \theta_{13} e^{-i\delta} \\ 0 & 1 & 0 \\ -\sin \theta_{13} e^{i\delta} & 0 & \cos \theta_{13} \end{pmatrix} \begin{pmatrix} \cos \theta_{12} & \sin \theta_{12} & 0 \\ -\sin \theta_{12} & \cos \theta_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}$ normal hierarchy inverted h

HOW CAN WE ADDRESS THESE QUESTIONS?

- Three general methods are available
- Long baseline neutrino beams
- Atmospheric neutrinos
- Reactor neutrinos

WHERE ARE WE NOW?

- Long baseline experiments T2K & Nova
 - Hints of CP violation and mass ordering
- Atmospheric neutrinos SK & Icecube
 - Contribute to mass ordering constraint
- Reactor neutrinos Daya Bay & Kamland (+ solar)
 - Pure θ_{13} measurement and Δm^2_{12} , θ_{12}

T2K EXPERIMENT

- 295km baseline matter effect small
- Narrow band neutrino beam Epeak ~600 MeV
- First measurements using off-axis beam technique

NOvA

- 810 km baseline
- $E_{peak} \sim 2 \text{ GeV}$
- 14 kton high granularity liquid scintillator detector
 - Near detector is the same technology

T2K & NOvA

JOINT FIT

Splits the difference in NO

Improves the constrain in IO

JOINT FIT

- Precision measurement of Δm_{23}^2
 - $(2.477 \pm 0.035) \times 10^{-3} eV^2$
- Mild preference for IO but it depends on how the θ_{13} constraint is implemented.
- In IO CP conservation is excluded at 3σ

Expect CPV if ordering is inverted

- We can also do joint fits between beam and atmospheric data
 - Beam strong CP sensitivity ullet
 - Atmospheric strong mass ordering • sensitivity

0.5

T2K SK JOINT FIT

- Unify models
 - Neutrino interactions
 - Detector Systematics
- CP conserving value of Jarlskog invariant excluded at $1.9-2\sigma$

-0.04

-0.02

0.00

0.02

 $J_{CP} \equiv s_{13}c_{13}^2s_{12}c_{12}s_{23}c_{23}\sin\delta_{CP}$

0.04

Normal ordering preferred True Inverted Ordering 220 density Prior uniform in δ_{CP} SK+T2K Preliminary Sensitivity 200E χ^2 (best δ_{CP} , MO) Prior uniform in $\sin \delta_{CP}$ 180 SK+T2K Posterior 3.5 160 2σ T2K 30 140E - SK (+ND) 120 2.5 100 χ²(best CP conserv.)

REACTOR NEUTRINOS

- Different effects at different baselines
- Short baseline θ_{13} , Δm_{31}^2
- Longer baseline θ_{12} , Δm^2_{12}

DIFFERENT BASELINES

- For reactor neutrinos the two Δm^2 values interfere in the survival probability
- We can tune our baseline to select the oscillations we want to measure
- Note the extra wiggle on top of the oscillation at longer baseline

THE WIGGLE

 $p(\bar{v_e} \to \bar{v_e}) \approx 1 - \cos^4\theta_{13} \sin^2 2\theta_{12} \sin^2 \left(\Delta m_{21}^2 \frac{L}{4E} \right) - \sin^2 2\theta_{13} \sin^2 \left(\Delta m_{ee}^2 \frac{L}{4E} \right)$

- For the full oscillation calculation Δm_{31}^2 and Δm_{32}^2 terms beat against each other.
- Different results for each mass ordering
- Can be measured at the right baseline with enough statistics and energy resolution

DETECTING REACTOR NEUTRINOS

- Classical reaction: inverse proton decay
 - $\overline{v_e} + p \rightarrow e^+ + n$
- Double signal : positron and delayed 2.2 MeV gamma from neutron capture
 - Strongly suppress backgrounds
- Determine neutrino energy from positron energy
- Everything we need for this measurement. Large liquid scintillator detector will work.

JUNO

- JUNO is a 20 kton liquid scintillator detector located 53 km from two nuclear power plants
- Its located 700 m underground and aims for a 3% energy resolution
- JUNO-TAO is a near detector to provide precision measurement of the reactor flux

High power nuclear power plants (26.6 GW total power)

Acrylic Sphere:

Inner Diameter (ID): 35.4 m Thickness:12 cm

Stainless Steel (SS) Structure:

ID: 40.1 m, Outer Diameter (OD): 41.1 m 17612 20-inch PMTs, 25600 3-inch PMTs Water pool:

ID: 43.5 m, Height: 44 m, Depth: 43.5 m 2400 20-inch PMTs

PMT SYSTEMS

- Dual calorimetry system
- 20012 20 inch PMTs
- 25600 3.1 inch PMTs
- Maximise photocoverage
 - Essential to achieve energy resolution
- Cross calibrate each system
 - Reduce detector systematics

JUNO Site

Surface buildings / campus

- Office / Dorm
- Surface Assembly Building
- LAB storage (5 kton)
- Water purification / Nitrogen
- Computing
- Power station
- Cable train

Vertical Shaft, 564 m put into use in 2023

Slope tunnel, 1266 m

 $\label{eq:rescaled} \begin{array}{l} \sim 650 \mbox{ m} \\ R_{\mu} \sim 0.004 \mbox{ Hz/m}^2 \\ <\!\! E_{\mu}\!\! > \! \sim 207 \mbox{ GeV} \end{array}$

~200 people working onsite now

ID#235, LS Purification	ID# 238, Optical charactr
ID#472, OSIRIS	ID#618, OSIRIS hardware

♦ LAB + 2.5 g/L PPO + 3 mg/L bis-MSB

- \Rightarrow Attenuation length: LAB > 24m, LS > 20 m
- ⇒ Minimum U/Th requirement (for NMO) < 1e-15 g/g, aiming at 1e-17 g/g for solar and future 0vββ
- ♦ All 60 ton PPO delivered, U/Th < 0.1 ppt</p>
- Bis-MSB complete production soon (< 5 ppt)

10

- Plants commissioned individually and jointly
- ▶ 20 kton LAB to be delivered, U/Th ~ 1 ppq

Calibration and Expected Energy Resolution

- ♦ Four systems for 1D, 2D, 3D scan with multiple sources
- Energy scale and non-linearity will be calibrated to <1% using γ peaks and cosmogenic ¹²B beta spectrum

ID#320, Calibration strategy ID#283, Natural radioactivity

Calibration house

All systems ready for installation

13

JHEP 03 (2021) 004

OSCILLATION PARAMETERS

World leading measurement in 100 days $(\theta_{12}, \Delta m_{21}^2, |\Delta m_{32}^2|)$ <0.5% precision in 6 years

MASS ORDERING

OTHER PHYSICS AT JUNO

- Supernova Neutrinos
 - Burst
 - Three detection channels
 - Multiflavour sensitivity
 - Diffuse SN neutrino background
 - 5σ in 10 years
- Solar neutrinos
 - Improve Borexino for ⁷Be, pep, CNO
- Atmospheric neutrinos
- Nucleon Decay

SN Signal at JUNO

JUNO STATUS

- JUNO construction is nearing completion
 - Aim to finish construction this year
 - Finish filling in 2025
- JUNO-TAO will be installed at the Taishan plant in 2024
- Expect data taking from the end of next year and first results in 2026 & 27

LONG BASELINE EXPERIMENTS

- While JUNO uses reactor neutrinos, we also create neutrino beams directly
- We can exploit the rich physics of $\nu_{\mu} \rightarrow \nu_{e}$
- We already discussed the latest from T2K and Nova doing this

LONG BASELINE EXPERIMENTS

$$p(\nu_{\mu} \rightarrow \nu_{e}) = \sin^{2}2\theta_{13}\sin^{2}\theta_{23}\sin^{2}\left(\frac{\Delta m_{31}^{2}L}{4E}\right) + 8c_{13}^{2}s_{12}s_{13}s_{23}(c_{12}c_{13}\cos\delta - s_{12}s_{23}s_{13})\cos\Phi_{32}\sin\Phi_{31}\sin\Phi_{12} + 8c_{13}^{2}c_{12}c_{23}s_{12}s_{13}s_{23}\sin\delta \sin\Phi_{32}\sin\Phi_{31}\sin\Phi_{12} + 4s_{12}^{2}c_{13}^{2}(c_{12}^{2}c_{23}^{2} + s_{12}^{2}s_{23}^{2}s_{13}^{2} - 2c_{12}c_{23}s_{12}s_{13}s_{23}\cos\delta)\sin^{2}\Phi_{12} + 4s_{12}^{2}c_{13}^{2}(c_{12}^{2}c_{23}^{2} + s_{12}^{2}s_{23}^{2}s_{13}^{2} - 2c_{12}c_{23}s_{12}s_{13}s_{23}\cos\delta)\sin^{2}\Phi_{12} + 8c_{13}^{2}s_{13}^{2}s_{23}^{2}(1 - 2s_{13}^{2})\frac{aL}{4E}\cos\Phi_{32}\sin\Phi_{31} + 8c_{13}^{2}s_{13}s_{23}^{2}(1 - 2s_{13}^{2})\frac{aL}{4E}\cos\Phi_{32}\sin\Phi_{31} + 8c_{13}^{2}s_{13}s_{23}^{2}(1 - 2s_{13}^{2})\frac{aL}{4E}\cos\Phi_{32}\sin\Phi_{31} + 8c_{13}^{2}s_{13}s_{23}^{2}(1 - 2s_{13}^{2})\frac{aL}{4E}\cos\Phi_{32}\sin\Phi_{31} + 8c_{13}^{2}s_{13}s_{13}s_{23}^{2}(1 - 2s_{13}^{2})\frac{aL}{4E}\cos\Phi_{32}\sin\Phi_{31} + 8c_{13}^{2}s_{13}s_{13}s_{23}s_{13}s$$

- Leading order termDrives appearance
- CP Even termImpact on spectrum
- CP odd term
 - Changes sign for antineutrinos
- Solar term
 - Little impact in LBL
- Matter term
 - Grows with L and E
 - Mass Ordering
 - Changes sign for antineutrinos

IMPACT ON SPECTRUM

More relative neutrino appearance – NH, CP = $-\frac{\pi}{2}$ More relative antineutrino appearance – IH, CP = $+\frac{\pi}{2}$ LAGUNA LBNO Spectra – shows indicative results

Note the impact on the second oscillation maximum

LONG BASELINE EXPERIMENTS

- Flux ~ $1/L^2$
- Matter Effect ~ E , L at fixed L/E
- Shorter baseline
 - More statistics
 - Reduced matter effect
 - Sensitivity to δ_{CP}
- Longer baseline
 - Lower statistics
 - Enhanced matter effect
 - Sensitivity to mass ordering and δ_{CP}
- Strong complementarity between experiments at different baselines

- Current generation
 - T2K
 - Shorter baseline
 - Narrow beam
 - Nova Longer baseline
 - Longer baseline
 - Narrow beam
- Future
 - Hyper-Kamiokande
 - Shorter baseline
 - Narrow beam
 - DUNE
 - Longer baseline
 - Wideband beam

DESIGN YOUR OWN LBL EXPERIMENT

- Choose baseline
 - Fixes E to tune to oscillation maximum
 - Shorter baseline \rightarrow Lower Energy
- How do you reconstruct your neutrino energy?
 - This depends on the dominant interaction
- Shorter baseline (E < ~1 GeV)
 - Dominated by CCQE
 - Need to reconstruct lepton momentum & direction
- Longer baseline (E > ~ 1 GeV)
 - Multi particle final states
 - Calorimetric reconstruction

- Design detector with one or other in mind
 - Must also have excellent electron/muon separation
- Design your near detector
 - Constrain your flux and cross sections
 - Match nuclear targets
 - Constrain the systematic on neutrino energy reconstruction
 - Non CCQE events (e.g. 2p2h)
 - Neutral particle production
- Select your beam type
 - Narrow (via off axis technique)
 - Wide band

HYPER KAMIOKANDE

3rd generation underground water Cherenkov detector in Kamioka

Kamiokande (1983-1996)

- Atmospheric and solar neutrino "anomaly"
- Supernova 1987A

Birth of neutrino astrophysics

Super-Kamiokande (1996 - ongoing)

- Proton decay: world best-limit
- Neutrino oscillation (atm/solar/LBL)
 ➤ All mixing angles and Δm²s

Discovery of neutrino oscillations

Hyper-Kamiokande (start operation in 2027)

- Extended search for proton decay
- Precision measurement of neutrino oscillation including CPV and MO
- Neutrino astrophysics
 Explore new physics

THE HYPER-KAMIOKANDE DETECTOR

- 258 kton Water Cherenkov detector • ~ 8 times larger than Super-Kamiokande
- 20000 50 cm PMTs
- 800 mPMTs
- 3600 OD units
 - 8 cm PMT
 - Wavelength shifting plate

WATER CHERENKOV TECHNIQUE

- Observe the Cherenkov Ring from charged
 particles
 - Optical "Sonic Boom" from faster than light (in water) particles
- >99% μ /e separation
- Momentum Reconstruction from charge collection

- Upgrade JPARC beamline
 - Towards 1.3 MW
 - 800 kW operation achieved in June
 - Further improvements by speeding up cycle from $1.36 \rightarrow 1.16$ s
- Uses off-axis technique to achieve narrow band beam

NEUTRINO BEAM

 $\theta = 0.005$

 $\theta = 0.01$

 $\theta = 0.015$

 $= 0.0^{\circ}$

10

12

- ND280 upgrade is part of the T2K experiment and will still be online at start of Hyper-K
 - Now operational
- New Detectors
 - sFGD
 - hTPCs
 - Time of flight
- Constrain predictions for far detector
 - Measure flux X cross section
- Magnetised so can measure wrong sign backgrounds
- Detailed kinematic measurements to constrain and develop cross section models

IWCD

- Approx 1 km from neutrino target
- 1 kton scale water Cherenkov
 - Use mPMTs for readout
 - Move detector up and down shaft to sample different off- axis angles
- Constrain neutrino energy mis-reconstruction
- Measure electron neutrino cross sections

A MOVEABLE DETECTOR

WHAT CAN WE DO WITH IWCD?

1.7GeV>Ev

Feed-down

IWCD FHC

1Re true CC

Reco Ev^{CCQE} (GeV)

All Events

Flux Error

1.5

True QE Events

True non-QE Events

2

EOE (GeV)

2.5

Off-axis 1°

1200

1000

800

600

400

200

±2500

E2000

1000 Com

500

events

Number of

- Non quasi elastic events can reconstruct to lower neutrino energy if interpreted as CCQE
- This feed down affects neutrino energy reconstruction
- By moving the detector through the • beam we sample different neutrino spectra
 - The feed down can be understood
- Can construct linear combinations of samples to measure feed down
- Self-shielding detector, significantly lower backgrounds for v_e measurement

A quasi-monochromatic beam of 900 MeV

0.5

PHOTOMULTIPLIER TUBES

- 20 000 Hamamatsu 50 cm box-and-line PMTs
 - Production, delivery and QA ongoing
 - ~X2 efficiency of SK PMTs
- ~800 multi PMT modules
 - 19 3 inch PMTs
 - Improved detector calibrations
- ~3600 8 cm OD PMTs with wavelength shifting plate

Photogrammetry Testing

CALIBRATION

- Optical Sources, radioactive sources and control samples
- Determine detector parameters and measure systematics
- Precalibration Programme & Photogrammetry
- Light Injection
 - Diffusers and collimators
 - mPMT system
 - OD injectors
- Electron Linac
 - 3-24 MeV electrons
- Radioactive Sources
 - DT Source ¹⁶N
 - AmBe + BGO tagged neutrons
 - Ni/Cf 9 MeV γ cascade
- Aim to suppress detector error < 1%

DT Operation

CONSTRUCTION SCHEDULE

CAVERN CONSTRUCTION

Oct. 3, 2023 Completion of the dome (dia. 69 m, height 21 m, ~1 Super-K)

WHAT DO WE SEE IN HK?

- Electron and muon like rings
 - Spectrum and rate
 - Neutrino and antineutrino running
- Rate and spectrum depend on δ_{CP}
- Systematics
 - Flux
 - Cross Sections
 - Cross section effects on neutrino energy reconstruction
 - Energy Scale/Resolution
 - Particle Identification
 - Reconstruction

CP MEASUREMENT PROSPECTS

- With known mass ordering can achieve 5σ CP conservation exclusion for true $\delta_{CP} {=} {-} {\pi}/{2}$ in 2-3 years
- After 10 years 60% of parameter space excluded at >5 σ

ATMOSPHERIC NEUTRINOS

- "Fractional change of upward v_e flux (cos Θ_{zenith} =-0.8)" cosΘ_=-0.8 NH, sin²θ₂₃=0.6, sin²θ₁₃=0.025, δ=40° NH, sin²θ₂₂=0.4, sin²θ₁₃=0.025, δ=40° cos⊖.=-0.8 (a) Ψ(v_e)/Ψ₀(v_e)-1 0.8 0.8 terference term sin²0₂₃=0.4 or 0.6 0.6 13 resonance te 0.6 0.4 0.2 0.2 0 0 Attill -0.2 -0.2 **Hierarchy** is -0.4 -0.4 10 NH or IH -1 10 CP=40° or 220° NH, sin² 0₂₃=0.6, sin² 0₁₃=0.025, δ=220 IH, sin²θ₂₃=0.6, sin²θ₁₃=0.025, δ=40 cos⊖_=-0.8 cos⊖ =-0.8 (c) Ψ(v_e)/Ψ₀(v_e)-1 0.8 0.8 0.6 0.6 0.4 0.4 0.2 0.2 MAMMAAAA 0 esonance in $\overline{V}e$ -0.2 (not shown) in the -0.4 -0.4 case of IH. 10 10 10 10 Ev(GeV) Ev(GeV)
- Exploit the matter effect for atmospheric neutrinos as they pass thought the mantle and core
- Sensitivity to mass hierarchy, δ_{CP} and octant
- ~80 events/day in HK

COMBINE BEAM AND ATMOSPHERICS

Break degeneracy between mass ordering and δ_{CP} and recover coverage

PRECISION MEASUREMENT OF δ_{CP}

- As well as discovering CP violation aim to measure δ_{CP} precisely.
- Depends on value of δ_{CP}
 - Near CP conserving values ~6°
 - Close to $\pm \pi/2 \sim 20^{\circ}$
- Strongly depends on achieving best possible systematics
 - Flux
 - Cross section
 - Detector

 $\sin^2\theta_{13}$ =0.0218±0.0007, $\sin^2\theta_{23}$ =0.528, Δm_{32}^2 =2.509×10⁻³ eV²/c⁴

PROTON DECAY

Free protons

800

Bound protons

1000

3

98765

Number of Events

Number of Events

 $p \rightarrow e^+ \pi^0$

- Proton decay is predicted by grand unified theories
- Suppression by ${}^{1}/_{M_{X}^{4}}$ very long lifetimes
- HK is only realistic option to probe 10³⁵ years

1200

OTHER HK PHYSICS

- Supernova neutrinos
 - Burst
 - 70k events for SN at 10 kpc
 - Alert with 1° pointing
 - Diffuse SN background
 - 4 events/ yr with neutron tag
- Solar neutrinos
 - Upturn search
 - Day night asymmetry measurement
 - Check compatibility of solar and reactor parameters

DUNE DUVE DEEP UNDERGROUND NEUTRINO EXPERIMENT

53

THE DUNE EXPERIMENT

- Wideband neutrino beam >2 MW
- Modular 40 kt fiducial mass liquid argon TPC

- 1300 km baseline FNAL \rightarrow Sandford
- Near detector complex including a movable detector

DUNE Horizontal Drift simulated 2.5 GeV v_e

DUNE Horizontal Drift simulated 3.0 GeV v_µ

LIQUID ARGON TPC

- 60% of interactions at DUNE energies have final state pions
- LAr TPC allow precise reconstruction of final state
- Excellent separation of e/ μ and e/ γ
- Aim for 4 detectors 17 kt each
 12 x 12 x 60 m

LBNF BEAMLINE

- Wideband beam
 - On axis
 - High flux between first and second oscillation maximum
- Working towards 2 MW beam
 - Aim to double frequency of spills from MI

NEAR DETECTORS

- Movable LAr TPC with muon spectrometer
 - Use off axis effect to measure different spectra
 - Constrain cross sections and neutrino energy reconstruction as a function of neutrino energy
- SAND detector
 - On axis
 - Beam monitor
 - Repurpose solenoid magnet and ECAL from KLOE
 - Add a low-density tracker

DUNE PHASE I

Horizonal Drift

- Full near and far site facility
- Two 17 kt Lar TPCs
 - Horizontal Drift module
 - Vertical Drift module
- 1.2 MW neutrino beamline
- Near detectors
 - Moveable LAr TPC + muon catcher
 - SAND

DUNE PHASE II

- Two additional FD modules
 - 3 LAr TPC
 - 4 Module of opertunity
- Upgrade beamline to >2 MW
- More capable near detector
 High pressure gas Ar TPC

DUNE CONSTRUCTION

- Far site excavation has been completed
- Building and site infrastructure until mid 2025
- Far detector installation in 2026&27
- Purge and fill with Argon 2028
- First physics by early 2029
- Beam and near detectors from 2031

0.5 GeV

,+ve per

v_e+⊽_e per 0.5 GeV

900

800

700

600

500

400 E 300 E

200 F

100 E

350 F

250

200 F

150

100 E

50 F

DUNE FD V.

Stat errors only

 $\delta_{ep} \equiv 0$

12 years

DUNE FD V.

Stat errors only

 $\delta_{cp} = 0$

12 years

2

WHAT DOES DUNE MEASURE?

NO sin ${}^{2}\theta_{23} = 0.44$

NO sin $\theta_{22} = 0.56$

NO sin $2\theta_{23} = 0.56$

IO sin²0,, = 0.44

 $10 \sin^2 \theta_{23} = 0.56$

NO sin²0,22 = 0.50

Reconstructed E. (GeV)

 $10 \sin^2 \theta_{2} = 0.44$

- $\log \sin^2 \theta_{23} = 0.56$ NO $\sin^2 \theta_{23} = 0.50$ DUNE aim to measure neutrino and antineutrino oscillations as a function of L/E Test the three-flavour Reconstructed E. (GeV) model NO sin $\theta_{23} = 0.44$
 - Measure oscillation parameters
 - Full 5σ sensitivity to MO for all PMNS parameters

SENSITIVITY TO MASS ORDERING

Worst case scenario physics parameters

- DUNE is very sensitive to the mass ordering
 - Longer baseline
 - More matter effect
 - More mass ordering sensitivity
- 5σ exclusion of wrong ordering in 1 3 years.

CP SENSITIVITY

- CP sensitivity in DUNE is through full spectral fit
 - Help to decouple from mass ordering
 - Good to start testing PMNS model
- 5σ coverage of 50% of δ_{CP} values in 12 years
- Smallest final error on δ_{CP} around CP conserving values

BEYOND THREE FLAVOUR OSCILLATIONS

- Broad range of L/E at ND and FD
 - Search for non-SM oscillations
- High statistics in neutrino and antineutrino mode
- Very large matter effect
 - Unique sensitivity to some NSI models

OTHER DUNE PHYSICS

- Solar neutrinos
 - Interaction of v_e with Ar gives improved spectral sensitivity
 - Can make first measurement of hep neutrinos
- Atmospheric neutrinos
 - DUNEs first high energy neutrino measurements
 - Hadron reconstruction improves
 angular resolution
- Supernova neutrinos
 - Primary sensitivity to ν_{e}
 - Access to neutronization peak

LONG BASELINE FURTHER DOWN THE ROAD

- The impact of oscillations at the second maximum is enhanced.
- Experiments may want to follow this up
 - KNO
 - ESSvSB
- DUNE module of opportunity
 - Could be a different technology
 - THEIA
 - WBLS detector
 - Scintillation and Cherenkov
 - Opens up new possibilities

BEYOND OSCILLATIONS

- Very successful first 10 years of IceCube
- ICECube Gen 2
 - 5X effective area
 - 2x angular resolution
 - Includes Radio array
- Northern Hemisphere Telescopes
 - KM3Net
 - Now under construction
 - First data with first strings already taken
 - P1
 - In the Pacific off Victoria
 - BAIKAL-LVD
- Neutrino mass experiments
 - Katrin++
 - Project 8
 - ECHo and Holmes
- And more.....

SUMMARY

- We are approaching the precision measurement phase for neutrino oscillations
 - Excellent prospects to discover CP violation, mass ordering and octant in the next 10 years
 - Should think ahead: how do we verify the PMNS model
- Three very large experiments to start in this period
 - JUNO
 - Hyper-Kamiokande
 - DUNE
- It's a broad field there are many other smaller experiments as well and I didn't even mention the neutrino factory.....

THANK YOU FOR LISTENING

69