Neutrino Oscillations in Daya Bay from a pheno point of view

Yuber F. Perez-Gonzalez

yuber.f.perez-gonzalez@durham.ac.uk

YETI-2024 The Three Neutrino Problem

Credit: Qiang Xiao

The reason for the Daya Bay experiment

Massive Neutrinos 2024

3ν Flavour Parameters

Concha Gonzalez-Garcia

• For for 3 ν 's : 3 Mixing angles + 1 Dirac Phase + 2 Majorana Phases

$$U_{\rm LEP} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{i\delta_{\rm CP}} \\ 0 & 1 & 0 \\ -s_{13}e^{-i\delta_{\rm CP}} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{21} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} e^{b} & 0 & 0 \\ 0 & 0^{2} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

• Convention: $0 \le \theta_{ij} \le 90^\circ$ $0 \le \delta \le 360^\circ \Rightarrow 2$ Orderings

Experiment	Dominant	Important	Additional
Solar Experiments Reactor LBL (KamLAND)	$ heta_{12}\ \Delta m^2_{21}$	$\Delta m^2_{21} \ heta_{12}$	$egin{array}{c} heta_{13} \ heta_{13} \end{array}$
Reactor MBL (Daya Bay, Reno, D-Chooz)	$\theta_{13}, \Delta m^2_{3\ell}$		
Atmospheric Experiments (SK,IC) Acc LBL ν_{μ} Disapp (Minos,T2K,NOvA)	$egin{array}{l} heta_{23} \ \Delta m^2_{3\ell}. \ heta_{23} \end{array}$	$\Delta m^2_{3\ell}$	$ heta_{13}$, $\delta_{ m cp}$
Acc LBL ν_e App (Minos, T2K, NOvA)	$\delta_{ m cp}$ = 20		$ heta_{13}$

Rather interesting things were happening with neutrino oscillations!

Status circa 05/2004

Maltoni et al, New. J. Phys. 6, 122 (2004)

YETI School - July 30th, 2024

Yuber F. Perez-G. - IPPP, Durham U

What about θ_{13} ?

What about θ_{13} ?

Reactor $\overline{\nu}_e$ disappearance offer a window to $\Delta m^2 \sim 10^{-2} - 10^{-3} \text{ eV}^2$ for distances of $\mathcal{O}(\text{km})$

Null results What about θ_{13} ? from CHOOZ 10^{-2} The region Reactor $\overline{\nu}_e$ disappearance The region disallowed from allowed from offer a window to CHOOZ data CHOOZ data $\Delta m^2 \sim 10^{-2} - 10^{-3} \text{ eV}^2$ for distances of $\mathcal{O}(\mathbf{km})$ 90% CL allowed region from Sk+K2K : $\Delta m^2_{31}/eV^2$ Using L/E range Using the zenith range 90% CL 95% CL 99% CL 99.73% CL 10^{-3} 10⁻³ 10⁻² 10⁻¹ 10^{0} 10^{1} $\tan^2 \theta_{13}$ S Goswami, 2004

 10^{2}

Inverse Beta Decay

 $n \rightarrow p^+ + e^- + \bar{\nu}_e$ $\bar{\nu}_e + p^+ \rightarrow n + e^+$

Inverse Beta Decay

$$n \rightarrow p^+ + e^- + \bar{\nu}_e$$
 $\bar{\nu}_e + p^+ \rightarrow n + e^+$

Inverse Beta Decay

$$n \rightarrow p^+ + e^- + \bar{\nu}_e$$
 $\bar{\nu}_e + p^+ \rightarrow n + e^+$

Inverse Beta Decay

$$n \rightarrow p^+ + e^- + \bar{\nu}_e$$
 $\bar{\nu}_e + p^+ \rightarrow n + e^+$

Inverse Beta Decay

$$n \rightarrow p^+ + e^- + \bar{\nu}_e$$
 $\bar{\nu}_e + p^+ \rightarrow n + e^+$

Inverse Beta Decay

$$n \rightarrow p^+ + e^- + \bar{\nu}_e$$
 $\bar{\nu}_e + p^+ \rightarrow n + e^+$

Inverse Beta Decay

$$n \rightarrow p^+ + e^- + \bar{\nu}_e$$
 $\bar{\nu}_e + p^+ \rightarrow n + e^+$

Inverse Beta Decay

$$n \rightarrow p^+ + e^- + \bar{\nu}_e$$
 $\bar{\nu}_e + p^+ \rightarrow n + e^+$

 $\Phi_{\bar{\nu}} \sim 2 \times 10^{20} \text{ s}^{-1}/\text{GW}$

 $\Delta t \sim 30 \ \mu s$

What about θ_{13} ?

Reactor $\overline{\nu}_e$ disappearance offer a window to $\Delta m^2 \sim 10^{-2} - 10^{-3} \text{ eV}^2$ for distances of $\mathcal{O}(\text{km})$

Main issue: Large systematic uncertainties

- Total flux
- Cross sections
- Efficiencies
- Time dependence

What about θ_{13} ?

Reactor $\overline{\nu}_e$ disappearance offer a window to $\Delta m^2 \sim 10^{-2} - 10^{-3} \text{ eV}^2$ for distances of $\mathcal{O}(\text{km})$

Main issue: Large systematic uncertainties

- Total flux
- Cross sections
- Efficiencies
- Time dependence

Use 2 or more detectors!

Disappearance Probability

In the $3-\nu$ framework

 $P(\overline{\nu}_e \to \overline{\nu}_e) = 1 - \cos^4 \theta_{13} \sin^2 2\theta_{12} \sin^2 \Delta_{21} - \sin^2 2\theta_{13} (\cos^2 \theta_{12} \sin^2 \Delta_{31} + \sin^2 \theta_{12} \sin^2 \Delta_{32})$

$$\Delta_{ij} = 1.267 \left(\frac{\Delta m_{ij}^2}{1 \text{ eV}^2}\right) \left(\frac{L}{1 \text{ m}}\right) \left(\frac{1 \text{ MeV}}{E_{\nu}}\right)$$

In the $3-\nu$ framework

 $P(\overline{\nu}_e \to \overline{\nu}_e) \approx 1 - \cos^4 \theta_{13} \sin^2 2\theta_{12} \sin^2 \Delta_{21} - \sin^2 2\theta_{13} \sin^2 \Delta_{ee}$

Valid for $L/E \lesssim 1 \text{ km/MeV}$

 $\Delta_{ij} = 1.267 \left(\frac{\Delta m_{ij}^2}{1 \text{ eV}^2} \right) \left(\frac{L}{1 \text{ m}} \right) \left(\frac{1 \text{ MeV}}{E_{\nu}} \right)$

$$\Delta m_{ee}^2 = \cos^2 \theta_{12} \Delta m_{31}^2 + \sin^2 \theta_{12} \Delta m_{32}^2$$

Nunokawa et al, PRD 72, 013009 (2005)

YETI School - July 30th, 2024

What about θ_{13} ?

Reactor $\overline{\nu}_e$ disappearance offer a window to $\Delta m^2 \sim 10^{-2} - 10^{-3} \text{ eV}^2$ for distances of $\mathcal{O}(\text{km})$

Main issue: Large systematic uncertainties

- Total flux
- Cross sections
- Efficiencies
- Time dependence

Use 2 or more detectors!

YETI School - July 30th, 2024

Yuber F. Perez-G. - IPPP, Durham U

YETI School - July 30th, 2024

Yuber F. Perez-G. - IPPP, Durham U

EH3

AD5

YETI School - July 30th, 2024

The Year 2024

Systematics, mainly detector differences, contributed about 50% in the total error

The Year 2024

Our task: Reproduce the latest result on $\sin^2 2\theta_{13}$, Δm_{ee}^2 from Daya Bay

Our task: Reproduce the latest result on $\sin^2 2\theta_{13}$, Δm_{ee}^2 from Daya Bay

References: Daya Bay results: <u>1607.05378</u>, <u>1610.04802</u>, <u>2211.14988</u> NuFit approach: <u>1811.05487</u>

YETI School - July 30th, 2024

In the $3-\nu$ framework

 $P(\overline{\nu}_e \to \overline{\nu}_e) \approx 1 - \cos^4 \theta_{13} \sin^2 2\theta_{12} \sin^2 \Delta_{21} - \sin^2 2\theta_{13} \sin^2 \Delta_{ee}$

Valid for $L/E \lesssim 1 \text{ km/MeV}$

 $\Delta_{ij} = 1.267 \left(\frac{\Delta m_{ij}^2}{1 \text{ eV}^2} \right) \left(\frac{L}{1 \text{ m}} \right) \left(\frac{1 \text{ MeV}}{E_{\nu}} \right)$

$$\Delta m_{ee}^2 = \cos^2 \theta_{12} \Delta m_{31}^2 + \sin^2 \theta_{12} \Delta m_{32}^2$$

Nunokawa et al, PRD 72, 013009 (2005)

YETI School - July 30th, 2024

In the 3- ν framework

$$P(\overline{\nu}_e \to \overline{\nu}_e) \approx 1 - \cos^4 \theta_{13} \sin^2 2\theta_{12} \sin^2 \Delta_{21} - \sin^2 2\theta_{13} \sin^2 \Delta_{ee}$$

Valid for $L/E \lesssim 1 \text{ km/MeV}$

 $\Delta_{ij} = 1.267 \left(\frac{\Delta m_{ij}^2}{1 \text{ eV}^2}\right) \left(\frac{L}{1 \text{ m}}\right) \left(\frac{1 \text{ MeV}}{E_{\nu}}\right)$

$$\Delta m_{ee}^2 = \cos^2 \theta_{12} \Delta m_{31}^2 + \sin^2 \theta_{12} \Delta m_{32}^2$$

Nunokawa et al, PRD 72, 013009 (2005)

YETI School - July 30th, 2024

In the 3- ν framework

 $P(\overline{\nu}_e \to \overline{\nu}_e) \approx 1 - \cos^4 \theta_{13} \sin^2 2\theta_{12} \sin^2 \Delta_{21} - \sin^2 2\theta_{13} \sin^2 \Delta_{ee}$

Valid for $L/E \lesssim 1 \text{ km/MeV}$

 $\Delta_{ij} = 1.267 \left(\frac{\Delta m_{ij}^2}{1 \text{ eV}^2} \right) \left(\frac{L}{1 \text{ m}} \right) \left(\frac{1 \text{ MeV}}{E_{\nu}} \right)$

$$\Delta m_{ee}^2 = \cos^2 \theta_{12} \Delta m_{31}^2 + \sin^2 \theta_{12} \Delta m_{32}^2$$

Nunokawa et al, PRD 72, 013009 (2005)

YETI School - July 30th, 2024

In the 3- ν framework

$$P(\overline{\nu}_e \to \overline{\nu}_e) \approx 1 - \cos^4 \theta_{13} \sin^2 2\theta_{12} \sin^2 \Delta_{21} - \sin^2 2\theta_{13} \sin^2 \Delta_{ee}$$

Valid for $L/E \lesssim 1 \text{ km/MeV}$

 $\Delta_{ij} = 1.267 \left(\frac{\Delta m_{ij}^2}{1 \text{ eV}^2} \right) \left(\frac{L}{1 \text{ m}} \right) \left(\frac{1 \text{ MeV}}{E_{\nu}} \right)$

$$\Delta m_{ee}^2 = \cos^2 \theta_{12} \Delta m_{31}^2 + \sin^2 \theta_{12} \Delta m_{32}^2$$

Nunokawa et al, PRD 72, 013009 (2005)

YETI School - July 30th, 2024

Kinematics:

 $\approx E_{\overline{\nu}} - (m_n - m_p - m_e) = E_{\overline{\nu}} - 0.78 \text{ MeV}$

Kinematics:

Kinematics:

$$\begin{split} E_{\text{prompt}} &\approx T_{e^+} + 2m_e \\ &\approx E_{\overline{\nu}} - (m_n - m_p - m_e) = E_{\overline{\nu}} - 0.78 \text{ MeV} \end{split}$$

Luckily, the DayaBay collaboration has provided data as function of **true** prompt energy

$$N_{pdb} = \mathcal{N}_{pd} \ \epsilon_d \sum_{r=\text{reactors}} \int_{E_b}^{E_{b+1}} dE_{\text{prompt}} \ \frac{d\phi_{rd}(\overline{\nu}_e)}{dE_{\nu}} \ P(\overline{\nu}_e \to \overline{\nu}_e; L_{dr}) \ \sigma_{\text{IBC}}(E_{\nu})$$

Ingredients: IBD Cross Section

Vogel, Beacom PRD 60 (1999) 053003

Ingredients: Neutrino Flux

 $\frac{d\phi_{rd}(\overline{\nu}_e)}{dE_{\nu}} = \frac{W_{\text{th}}}{4\pi L_{rd}^2} \sum_{\text{isotopes}} \frac{p_i}{Q_i} S_i(E_{\nu})$

 $W_{\text{th}} \rightarrow \text{Thermal Power}, W_{\text{th}} = N_i Q_i$ $N_i \rightarrow \text{Number of fissions per s}$ $Q_i \rightarrow \text{Energy released per isotope}$ $p_i \rightarrow \text{Power fraction}$ $S_i(E_\nu) \rightarrow \text{Antineutrino spectrum per fission}$

> We will use the interpolated formulae for $S_i(E_{\nu})$ from Huber-Mueller (HM)

Huber, <u>PRC84:024617(2011)</u> Mueller et al, <u>PRC83:054615(2011)</u>

Ingredients: Neutrino Flux — 2

		Reactor						
Thermal power for		D1	D2	L1	L2	L3	L4	
Daya Bay and Ling Ao	$\overline{W}_{ m th}^{ m 6AD}$	2.082	2.874	2.516	2.554	2.825	1.976	
NPPs?	$\overline{W}_{ m th}^{ m 8AD}$	2.514	2.447	2.566	2.519	2.519	2.550	
DB Collaboration, PRD 95, 072006 (2017) <u>1610.04802</u>							In GWs	
Power fractions?	Reactor classes		²³⁵ U	²³⁸ U	²³⁹ Pu	2	²⁴¹ Pu	
]	PWR		0.078	0.328	(0.056	
	TA and	BLE II. En En En En En En BLE II. En	nergy release n from Ma e	ed per fission et al. [38].	Q_i for ²³⁵ U,	²³⁸ U, ²³⁹ F	Pu,	
Energy released per	Fiss	Fissile isotope			Q_i (MeV)			
isotope?	²³⁵ U	²³⁵ U			202.36 ± 0.26			
	²³⁸ U	²³⁸ U			205.99 ± 0.52			
	²³⁹ F	²³⁹ Pu ²⁴¹ P			211.12 ± 0.34			
	===	²⁴¹ Pu				214.26 ± 0.33		
Baldoncini et al, PRD 91 (2015) 065002								

3 Different periods of data taking

DB Collaboration, 2211.14988

3 Different periods of data taking

DB Collaboration, 2211.14988

	6AD 217 days	8AD 1524 days	7AD 1417 days
EH1	AD1, AD2	AD1, AD2	AD2
EH2	AD3	AD3, AD8	AD3, AD8
EH3	AD4, AD5, AD6	AD4, AD5, AD6, AD7	AD4, AD5, AD6, AD7

3 Different periods of data taking

DB Collaboration, 2211.14988

	6AD 217 days	8AD 1524 days	7AD 1417 days
EH1	AD1, AD2	AD1, AD2	AD2
EH2	AD3	AD3, AD8	AD3, AD8
EH3	AD4, AD5, AD6	AD4, AD5, AD6, AD7	AD4, AD5, AD6, AD7

Efficiencies

	EH1		EH2			EH3		
	AD1	AD2	AD3	AD8	AD4	AD5	AD6	AD7
$\overline{\nu}_e$ candidates	794335	1442475	1328301	1216593	194949	195369	193334	180762
DAQ live time [days]	1535.111	2686.110	2689.880	2502.816	2689.156	2689.156	2689.156	2501.531
$\varepsilon_{\mu} imes \varepsilon_{m}$	0.7743	0.7716	0.8127	0.8105	0.9513	0.9514	0.9512	0.9513

3 Different periods of data taking

DB Collaboration, 2211.14988

	6AD 217 days	8AD 1524 days	7AD 1417 days
EH1	AD1, AD2	AD1, AD2	AD2
EH2	AD3	AD3, AD8	AD3, AD8
EH3	AD4, AD5, AD6	AD4, AD5, AD6, AD7	AD4, AD5, AD6, AD7

Efficiencies

	EH1		EH2			E		
	AD1	AD2	AD3	AD8	AD4	AD5	AD6	AD7
$\overline{\nu}_e$ candidates	794335	1442475	1328301	1216593	194949	195369	193334	180762
DAQ live time [days]	1535.111	2686.110	2689.880	2502.816	2689.156	2689.156	2689.156	2501.531
$arepsilon_{\mu} imesarepsilon_{m}$	0.7743	0.7716	0.8127	0.8105	0.9513	0.9514	0.9512	0.9513

> Muon veto and multiplicity selection

Backgrounds

Instrumental

PMTs emitting light

Uncorrelated

 Accidentals:
 Events producing two photons within the time interval expected for an IBD

Correlated

- Muons
- Fast neutrons
- ⁹Li and ⁸He
- ★ ²⁴¹Am ¹³C neutron sources
- * (α, n) interactions
- High multiplicity signals

Accidentals $[day^{-1}]$ 7.11 ± 0.01 5.00 ± 0.00 6.76 ± 0.01 4.85 ± 0.01 0.80 ± 0.00 0.66 ± 0.00 0.77 ± 0.00 0.79 ± 0.00 Fast n + muon-x $[day^{-1}]$ 0.83 ± 0.17 0.96 ± 0.19 0.56 ± 0.11 0.56 ± 0.11 0.05 ± 0.01 0.05 ± 0.01 0.05 ± 0.01 0.05 ± 0.01 ${}^{9}\text{Li}/{}^{8}\text{He} [\text{AD}^{-1} \text{ day}^{-1}]$ 2.92 ± 0.78 2.45 ± 0.57 0.26 ± 0.04 241 Am- 13 C [day-1] 0.16 ± 0.07 0.11 ± 0.05 0.13 ± 0.06 0.12 ± 0.05 0.04 ± 0.02 0.04 ± 0.02 0.04 ± 0.02 0.03 ± 0.01 $^{13}C(\alpha, n)^{16}O [day^{-1}]$ 0.04 ± 0.02 0.03 ± 0.02 0.08 ± 0.04 0.06 ± 0.03 0.04 ± 0.02 0.06 ± 0.03 0.04 ± 0.02 0.04 ± 0.02

DB Collaboration, <u>2211.14988</u>

Backgrounds

Instrumental

PMTs emitting light

Uncorrelated

 Accidentals:
 Events producing two photons within the time interval expected for an IBD

Correlated

- Muons
- Fast neutrons
- ⁹Li and ⁸He
- ★ ²⁴¹Am ¹³C neutron sources
- * (α, n) interactions
- High multiplicity signals

Accidentals $[day^{-1}]$ 7.11 ± 0.01 5.00 ± 0.00 6.76 ± 0.01 4.85 ± 0.01 0.80 ± 0.00 0.66 ± 0.00 0.77 ± 0.00 0.79 ± 0.00 Fast n + muon-x $[day^{-1}]$ 0.83 ± 0.17 0.96 ± 0.19 0.56 ± 0.11 0.56 ± 0.11 0.05 ± 0.01 0.05 ± 0.01 0.05 ± 0.01 0.05 ± 0.01 ${}^{9}\text{Li}/{}^{8}\text{He} [\text{AD}^{-1} \text{ day}^{-1}]$ 2.92 ± 0.78 2.45 ± 0.57 0.26 ± 0.04 241 Am- 13 C [day-1] 0.16 ± 0.07 0.11 ± 0.05 0.13 ± 0.06 0.12 ± 0.05 0.04 ± 0.02 0.04 ± 0.02 0.04 ± 0.02 0.03 ± 0.01 $^{13}C(\alpha, n)^{16}O [day^{-1}]$ 0.08 ± 0.04 0.06 ± 0.03 0.04 ± 0.02 0.06 ± 0.03 0.04 ± 0.02 0.04 ± 0.02 0.03 ± 0.02 0.04 ± 0.02

DB Collaboration, <u>2211.14988</u>

DayaBay collaboration has also provided us data with the full backgrounds!

Events at experimental hall *eh* during period *p* in the *true* prompt energy bin *b*:

 $N_{pb}^{eh} = \sum_{d = \text{detectors in EH}_{eh} \text{ during period } p} N_{pdb}$

Events at experimental hall *eh* during period *p* in the *true* prompt energy bin *b*:

 $N_{pb}^{eh} = \sum_{d = \text{detectors in EH}_{eh} \text{ during period } p} N_{pdb}$

We will provide you all these quantities!

As there is some information we don't know about the data taking, we take a ratio of the events to the EH1 to perform the analysis

 χ^2 analysis, including systematic uncertainties

As there is some information we don't know about the data taking, we take a ratio of the events to the EH1 to perform the analysis

 χ^2 analysis, including systematic uncertainties

$$\chi^{2}(\sin^{2}\theta_{13}, \Delta m_{ee}^{2}; \vec{\alpha}) = \sum_{p=\text{periods } b=\text{bins}} \left[\frac{1}{(\sigma_{pb}^{21})^{2}} \left(\frac{O_{pb}^{2} - (1 + \alpha_{Bp}^{2})B_{pb}^{2}}{O_{pb}^{1} - (1 + \alpha_{Ep}^{21})B_{pb}^{1}} - (1 + \alpha_{ep}^{21})\frac{N_{pb}^{2}}{N_{pb}^{1}} \right)^{2} + \frac{1}{(\sigma_{pb}^{31})^{2}} \left(\frac{O_{pb}^{3} - (1 + \alpha_{Bp}^{3})B_{pb}^{3}}{O_{pb}^{1} - (1 + \alpha_{Ep}^{31})B_{pb}^{3}} - (1 + \alpha_{ep}^{31})\frac{N_{pb}^{3}}{N_{pb}^{1}} \right)^{2} \right]$$

As there is some information we don't know about the data taking, we take a ratio of the events to the EH1 to perform the analysis

 $\chi^{2} \text{ analysis, including systematic uncertainties}} \qquad \begin{array}{l} Observed \text{ minus background in EH2} \\ \chi^{2}(\sin^{2}\theta_{13}, \Delta m_{ee}^{2}; \vec{\alpha}) = \sum_{p=\text{periods } b=\text{bins}} \sum_{b=\text{bins}} \left[\frac{1}{(\sigma_{pb}^{21})^{2}} \left(\frac{O_{pb}^{2} - (1 + \alpha_{Bp}^{2})B_{pb}^{2}}{O_{pb}^{1} - (1 + \alpha_{Ep}^{21})} \frac{N_{pb}^{2}}{N_{pb}^{1}} \right)^{2} \\ + \frac{1}{(\sigma_{pb}^{31})^{2}} \left(\frac{O_{pb}^{3} - (1 + \alpha_{Bp}^{3})B_{pb}^{3}}{O_{pb}^{1} - (1 + \alpha_{Ep}^{31})} \frac{N_{pb}^{3}}{N_{pb}^{1}} \right)^{2} \right] \end{array}$

As there is some information we don't know about the data taking, we take a ratio of the events to the EH1 to perform the analysis

As there is some information we don't know about the data taking, we take a ratio of the events to the EH1 to perform the analysis

As there is some information we don't know about the data taking, we take a ratio of the events to the EH1 to perform the analysis

As there is some information we don't know about the data taking, we take a ratio of the events to the EH1 to perform the analysis

Putting Things Together

As there is some information we don't know about the data taking, we take a ratio of the events to the EH1 to perform the analysis

Your Task:

We assume you have knowledge of python and that each one of you have a laptop

Your Task:

We assume you have knowledge of python and that each one of you have a laptop

Using provided Jupyter notebook:

- 1. Compute number of events N_{pb}^{eh}
- 2. Compute the $\chi^2(\sin^2\theta_{13}, \Delta m_{ee}^2; \vec{\alpha})$ as shown on the last slide
- 3. Marginalise over systematics
- 4. Find the allowed region in the 2D plane $(\sin^2 2\theta_{13}, \Delta m_{ee}^2)$, by computing $\Delta \chi^2 = \chi^2 \chi^2_{\min}$, and plotting $1, 2, 3\sigma$ regions
- Marginalise over either of these oscillation parameters to obtain the 1D allowed for the other parameter
- 6. Compare with official Daya Bay results!

Go to:

https://yeti-2425.notebooks.danielmaitre.phyip3.dur.ac.uk/

Go to:

https://yeti-2425.notebooks.danielmaitre.phyip3.dur.ac.uk/

Access with your credentials, and then click on Assignments:

Files	Running	Clusters	Assignments	Courses		
Released,	downloaded,	and submitted	l assignments for c	ourse: 🗸		3
Released	d assignments					
dayabay_analysis Fetch						
neutrino_oscillations Fetch						
test Fe				Fetch		

Go to:

https://yeti-2425.notebooks.danielmaitre.phyip3.dur.ac.uk/

Access with your credentials, and then click on Assignments:

Files	Running	Clusters	Assignments	Courses	
Released,	downloaded,	and submitted	assignments for c	burse: 👻	ε
Released assignments					
dayabay_analysis Fetch					
neutrino_oscillations Fetch					
test					Fetch

Select dayabay_analysis by clicking Fetch

After clicking "Fetch" this should appear:

Released, downloaded, and submitted assignments for course:	C
Released assignments	
neutrino_oscillations	Fetch
test	Fetch
Downloaded assignments	
dayabay_analysis -	Submit
dayabay_analysis	Validate

After clicking "Fetch" this should appear:

Released, downloaded, and submitted assignments for course:	2
Released assignments	
neutrino_oscillations	Fetch
test	Fetch
Downloaded assignments	
dayabay_analysis -	Submit
dayabay_analysis	Validate

Click on dayabay_analysis, which should open a new tab with a jupyter notebook for you to work in

After clicking "Fetch" this should appear:

Released, downloaded, and submitted assignments for course:	
Released assignments	
neutrino_oscillations	Fetch
test	Fetch
Downloaded assignments	
dayabay_analysis -	Submit
dayabay_analysis	Validate

Click on dayabay_analysis, which should open a new tab with a jupyter notebook for you to work in

What's already on the notebook

Data provided by Daya Bay

#Tables containing observed and expected IBD spectra for EH1,2,3 as function of true prompt energy

events_EH1 = np.loadtxt("./data/DayaBay_IBDPromptSpectrum_EH1_3158days.txt")
events_EH2 = np.loadtxt("./data/DayaBay_IBDPromptSpectrum_EH2_3158days.txt")
events_EH3 = np.loadtxt("./data/DayaBay_IBDPromptSpectrum_EH3_3158days.txt")

#Tables containing backgrounds for EH1,2,3 as function of true prompt energy

EH1_bkg=np.loadtxt("./data/DayaBay_BackgroundSpectrum_EH1_3158days.txt")
EH2_bkg=np.loadtxt("./data/DayaBay_BackgroundSpectrum_EH2_3158days.txt")
EH3_bkg=np.loadtxt("./data/DayaBay_BackgroundSpectrum_EH3_3158days.txt")

- IBD cross-section
 def sigma(Enu): '''Total cross section, in cm^2'''
 Oscillation probability
 def Pee(Enu, Lij, osc_pars): # Enu in MeV, Lij in m sinsq_2th13, Dm2_ee = osc_pars
- Neutrino flux at a given EH

def flux_anue_Pee(Enu, pars): # We include here the oscillation probabilty
 period, detector, reactor, sinsq_2th13, Dm2ee = pars

What's already on the notebook

# Detectors proper	ies:
#	fiducial mass in kg, efficiency, detector-reactors distances in m
<pre>Detectors_dict = {</pre>	AD1':{'mass':19941, 'eff':0.7743, 'DB1':362.38, 'DB2':371.76, 'LA1':903.47, 'LA2':817.16, 'LA3':1353.62, 'LA4':1265.32},
	AD2':{'mass':19967, 'eff':0.7716, 'DB1':357.94, 'DB2':368.41, 'LA1':903.35, 'LA2':816.90, 'LA3':1354.23, 'LA4':1265.89},
	AD3':{'mass':19891, 'eff':0.8127, 'DB1':1332.48, 'DB2':1358.15,'LA1':467.57, 'LA2':498.58, 'LA3':557.58, 'LA4':499.21},
	AD8':{'mass':19944, 'eff':0.8105, 'DB1':1337.43, 'DB2':1362.88, 'LA1':472.97, 'LA2':495.35, 'LA3':558.71, 'LA4':501.07},
	AD4':{'mass':19917, 'eff':0.9513, 'DB1':1919.63, 'DB2':1894.34, 'LA1':1533.18, 'LA2':1533.63, 'LA3':1551.38, 'LA4':1524.94},
	AD5':{'mass':19989, 'eff':0.9514, 'DB1':1917.52, 'DB2':1891.98, 'LA1':1534.92, 'LA2':1535.03, 'LA3':1554.77, 'LA4':1528.05},
	AD6':{'mass':19892, 'eff':0.9512, 'DB1':1925.26, 'DB2':1899.86, 'LA1':1538.93, 'LA2':1539.47, 'LA3':1556.34, 'LA4':1530.08}
	AD7':{'mass':19931, 'eff':0.9513, 'DB1':1923.15, 'DB2':1897.51, 'LA1':1540.67, 'LA2':1540.87, 'LA3':1559.72, 'LA4':1533.18}]

- Mass: detector mass in kg
- Eff: Efficiency associated with the detector
- Reactors: detector-reactor distance in m

What's already on the notebook

```
experiment_data = { '6AD' : { 'exposure':217*24.*3600., # in seconds
                                    'EH1':['AD1', 'AD2'],
                                    'EH2':['AD3'],
                                    'EH3':['AD4', 'AD5', 'AD6'],
                                    'Wth':{'DB1':2082, 'DB2':2874, 'LA1':2516,
                                           'LA2':2554, 'LA3':2825, 'LA4':1976}},
                     '8AD' : {'exposure':1524*24.*3600., # in seconds
                                    'EH1':['AD1', 'AD2'],
                                   'EH2':['AD3', 'AD8'],
'EH3':['AD4', 'AD5', 'AD6', 'AD7'],
                                    'Wth':{'DB1':2514, 'DB2':2447, 'LA1':2566,
                                           'LA2':2519, 'LA3':2519, 'LA4':2550}},
                     '7AD' : {'exposure':1417*24.*3600., # in seconds
                                    'EH1':['AD2'],
                                    'EH2':['AD3', 'AD8'],
                                    'EH3':['AD4', 'AD5', 'AD6', 'AD7'],
                                    'Wth':{'DB1':0.5*(2082+2514), 'DB2':0.5*(2874+2447),
                                           'LA1':0.5*(2516+2566), 'LA2':0.5*(2554+2519),
                                           'LA3':0.5*(2825+2519), 'LA4':0.5*(1976+2550)}}
```

- Exposure: time of data taking in s
- EHx: Detectors present in period
- Wth: Average thermal power associated with each reactors

Note that for 7AD we take the $W_{\rm th}$ average of 6AD and 8AD as this information is not provided by the collaboration afaik

Your Task:

We assume you have knowledge of python and that each one of you have a laptop

Using provided Jupyter notebook:

- 1. Compute number of events N_{pb}^{eh}
- 2. Compute the $\chi^2(\sin^2\theta_{13}, \Delta m_{ee}^2; \vec{\alpha})$ as shown on the last slide
- 3. Marginalise over systematics
- 4. Find the allowed region in the 2D plane $(\sin^2 2\theta_{13}, \Delta m_{ee}^2)$, by computing $\Delta \chi^2 = \chi^2 \chi^2_{\min}$, and plotting $1, 2, 3\sigma$ regions
- Marginalise over either of these oscillation parameters to obtain the 1D allowed for the other parameter
- 6. Compare with official Daya Bay results!

Any question?

Let's get down to business!

Thanks!