Image source: DALL-E Al

Energy-efficiency in high performance computing Antonin Portelli — 27/11/2024
from lattice QCD to large language models UK HEP Forum 2024

THE UNIVERSITY Science and DRAC
of EDINBURGH tochn®o8y e LJ |




- General considerations

- Summer 2022 DIiRAC Grid study
- Beyond the Grid library

- GPT large language model training



General considerations



World supercomputing energy cost

3.8 TWh/year

(GREEN500 Nov 2024, 199 systems)

- This s

EIA]

1.3% of the UK yearly energy consumption
2.9x CERN yearly energy consumption [CERN]
1.5 Mt/year of carbon emission (assuming 400 g/kWh)



https://www.eia.gov/international/data/world/electricity/electricity-consumption?pd=2&p=0000002&u=0&f=A&v=mapbubble&a=-&i=none&vo=value&t=C&g=00000000000000000000000000000000000000000000000001&l=249-ruvvvvvfvtvnvv1vrvvvvfvvvvvvfvvvou20evvvvvvvvvvnvvvs0008&s=315532800000&e=1609459200000&
https://home.cern/science/engineering/powering-cern

Software & energy efficiency

High-performance computing (HPC) has a small energy
footprint compared to e.g. manufacturing

However

Integrating energy-efficiency in HPC software design is
rarely a priority over raw performances

- The Al boom will increase dramatically the volume of

active HPC hardware in the world



Energy-efficiency and software design

- The energy efficiency of a software is measured as
the amount of work done per unit of energy consumed

- “Amount of work” is heavily context-dependent
Typically a number of operations (e.g. Flop) for HPC

Energy-efficiency is influenced by both the hardware used
and the software implementation of a given algorithm



Ethical aspects

“Amount of work” does not take into account the
usefulness of the work

- The Bitcoin blockchain has consumed
140.48 TWh so far in 2024 [CCAF, 25/11/2024]

Online ads rendering estimated to be
1.8 — 91 TWh/year [arXiv:2211.00071]

For scientific HPC work: is an expensive scientific
computation impactful? redundant? appropriately accurate?


https://ccaf.io/cbnsi/cbeci
https://arxiv.org/pdf/2211.00071

Improving energy-efficiency: goals

Understand the energy footprint of HPC calculations

Understand how to improve energy efficiency to help reaching
net zero computing targets

Understand how to mitigate the impact of surging energy
prices on scientific outputs

- Bottom-up approach: start from domain-specific studies.
Energy-efficiency is domain-dependent



Summer 2022 DiRAC study



Report and data

Report commissioned by UK STFC DIRAC
https://doi.org/10.5281/zen0do.7057318

Report data and running environment
https://doi.org/10.5281/zen0do.7057644

Everything available under CC-BY-NC 4.0

oNoe
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https://creativecommons.org/licenses/by-nc/4.0/legalcode
https://doi.org/10.5281/zenodo.7057318
https://doi.org/10.5281/zenodo.7057644

STFC DIRAC Tursa supercomputer
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The Grid library

- C++14 data parallel C++ mathematical /‘\
@ @

object library, targeted at lattice QCD . ’

- Cross-platform with architecture-specific M

optimisations GGRID
(x86, ARM, NVIDIA & AMD GPUs, ...)

- Optimally use MPI, OpenMP and SIMD/SIMT parallelism
under the hood

Free and open-source (GPLv2)
https://github.com/pabovle/Grid — https://doi.org/10.22323/1.251.0023


https://github.com/paboyle/Grid
https://doi.org/10.22323/1.251.0023

Grid performances on Tursa
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Benchmark setup

- Grid benchmark Benchmark_dwf_fp32, based on the single-
precision domain-wall fermion sparse matrix

- 2 full XH2000 racks
(48 nodes, 192 A100 GPUs)

. 2x16 nodes + 2x8 nodes

Layout based on optimal
communication topology

Rack 1 Rack 2

- Constant local problem size



Power control and monitoring

Power controlled through under-clocking of GPUs
Clock limit from 210 MHz to 1410 MHz (increment 15 MHz)
Default setting: maximum frequency 1410 MHz

Power monitoring
1) per GPU (NVIDIA SMI) 2) per rack (PDU through SNMP)
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Energy efficiency vs GPU clock
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Default setting not energy-optimal!
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Energy vs performance landscape

Relative energy cost (%)
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OQutcome

- Tursa GPUs set to 1050 MHz by default since Dec 22
Monitoring show a 11% decrease in energy consumption
Users reported no significant changes in throughput

Estimated energy savings are ~226 MWh (today)
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Beyond the Grid library
In collaboration with Simon Biirger (Edinburgh RSE)



QUDA benchmark

- QUDA is one of the main library for lattice QCD on GPUs

- Open-source, developed and supported by NVIDIA
https://github.com/lattice/quda

Here: custom QUDA benchmark, matching Grid benchmark
flop count and problem sizes

- Still using A100 GPUs on Tursa

- Single node, GPU power only
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https://github.com/lattice/quda

Energy efficiency, QUDA vs Grid
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Energy vs performance landscape, QUDA vs Grid
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Conclusion

- QUDA and Grid share an energy-optimal point at 1 GHz

- QUDA significantly faster than Grid for small sizes,
more similar for large sizes

Different energy profiles for small sizes,
almost identical at large sizes

- To be extended on multiple nodes!
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GPT language model training
In collaboration with Fabian Joswig (DeepL, formerly Edinburgh)



Setup

available GPT implementations “mmeRT_ nanoGPT

nanoGPT: open-source reproduction of GPT-2
OpenWebText2 training set (whole of Reddit 2005-2020)
Setup to reproduce GPT-1 (117 M) and GPT-2 (1.5 B)
Single node 4x GPUs, ~700 TFlop/s for GPT-2 &
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Results
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Conclusions

- A100 frequencies around 1 GHz generally lead to 20-30%
more energy efficient computations (GPUs only)

Energy saving potentially reduced by non-GPU elements

Impact on floating-point performances within
10% (lattice) & 20% (LLM training)

Lower default frequencies recommended on GPU clusters
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Perspectives

Should energy-efficiency become a standard performance
figure in benchmarks?

Should energy-efficiency become a stronger constraint in
supercomputer procurement?

Should energy-efficiency scaling and benchmarks become
part of peer-reviewing processes for resource allocation?
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Thank you!
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Raw data: GPU activity & power
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Performances vs GPU clock limit

Average performance (TFlop/s/node)
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Power draw vs clock limit

Median power draw (kW)
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Power draw breakdown
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