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Neutrinos in the Standard Model



Neutrinos in the Standard Model

In the Standard Model, fermions behave according to the Dirac equation,

(i�µ@µ � m )(  D

L
+  D

R
) = 0 4 components:  L, R , C

L
, C

R

mass

left-chiral part
right-chiral part

But for a massless fermion, m = 0, and

i�µ@µ L = 0 i�µ@µ L = 0

 L and  R are thus independent in this case. We can eliminate two degrees of

freedom, giving us a left-chiral Weyl field,

i�µ@µ 
W

L
= 0 2 components:  L, C

R

Neutrinos are strictly LH within the SM so are described by Weyl spinors

=) Neutrinos are thus massless within the SM

=) But neutrino oscillations tell us that they must be massive!!
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Massive neutrinos



Introducing sterile neutrinos

So, in order to generate neutrino masses, we need to add a right-handed neutrino.

In the SM, the W boson only interacts with left-chiral particles, such as ⌫L and ⌫C
R
. As

those particles interact with the SM, we refer to them as active neutrinos, ⌫

This means that right-chiral neutrinos, ⌫C
L

and ⌫R do not interact with any of the

forces within the SM, and are thus sterile neutrinos, N.
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Dirac vs. Majorana

Option 1: Dirac ⌫L 6= ⌫C
R

Add a RH neutrino field, ⌫D = ⌫L + ⌫R ,

��⌫vp
2
(⌫L⌫R + ⌫R⌫L) �mD(⌫L⌫R + ⌫R⌫L)

Higgs mechanism

=) 4 chiral fields : ⌫L, ⌫CL , ⌫R , ⌫CR

=) As mD ⌧ 1eV, this implies the need for unnatural Yukawa couplings �⌫ ⇡ 10�12

Option 2: Majorana ⌫L = ⌫C
R

Neutrinos could also be their own antiparticle: ⌫M = (⌫M)C . This implies,

Majorana condition

⌫R = (⌫L)C �mL(⌫L(⌫L)C + (⌫L)C⌫L)

=) 2 chiral fields : ⌫L, ⌫CL
=) Lepton Number is violated
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Dirac-Majorana masses

Rewrite the mass Lagrangian assuming left and right-handed neutrinos

LM = LD + LM

=

✓
�

1

2
mL(⌫L(⌫L)

C + (⌫L)
C⌫L)�

1

2
mR(⌫R(⌫R)

C + (⌫R)
C⌫R)

◆
�
✓
mD⌫L⌫R

◆

= �⌫DM M ( ⌫DM )C

M =

 
mL mD

mD mR

!
⌫DM =

0

@⌫DM

L
= ⌫L+(⌫L)

C

p
2

⌫DM

R
= ⌫R+(⌫R )

C

p
2

1

A

Eigenvalues give the physical masses
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Dirac-Majorana masses

M =

 
mL mD

mD mR

!
=) m1,2 =

1

2

✓
mL +mR ±

q
(mL �mR)2 + 4m2

D

◆

diagonalise

Scenario 1: mL = mD = 0 m1 = mL,m2 = 0 Majorana; Lepton number violated

Scenario 2: mR � mD m1 ⇡ mR ,m2 ⇡ m
2
D

mR

Type-I seesaw mechanism

Scenario 3: mL = mR = 0 m1 = m2 = mD
Dirac; lepton number conserved
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A fourth scenario: Quasi-Dirac neutrinos

In the third scenario, the eigenstates and masses are given by,

m1,2 ⇡ mD

⌫1 ⇡
1
p
2
[⌫ + ⌫C ] = ⌫C1 , ⌫2 ⇡

1
p
2
[�⌫ + ⌫C ] = ⌫C2

⌫ = ⌫1 + ⌫2

=) in the limit that mL = mR = 0, we recover the Dirac scenario. We obtain two

Majorana neutrinos which can be combined to form a single Dirac neutrino.
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Dirac-Majorana masses

M =

 
mL mD

mD mR

!
=) m1,2 =

1

2

✓
mL +mR ±

q
(mL �mR)2 + 4m2

D

◆

diagonalise

Scenario 1: mL = mD = 0 m1 = mL,m2 = 0 Majorana; Lepton number violated

Scenario 2: mR � mD m1 ⇡ mR ,m2 ⇡ m
2
D

mR

Type-I seesaw mechanism

Scenario 3: mL = mR = 0 m1 = m2 = mD
Dirac; lepton number conserved

Scenario 4: mR ⌧ mD ???
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A fourth scenario: Quasi-Dirac neutrinos

But, small deviations from the limit mL = mR = 0 lead to a quasi-Dirac scenario

where lepton number is no longer exactly preserved. We define,

� =
mL �mR

4mD

⌘ =
mL +mR

2mD

For ⌘ ⌧ 1 and � ⌧ 1, we obtain

m1,2 ⇡ mD(1± ⌘)

⌫1 ⇡
1
p
2
[(1 +�)⌫ + (1��)⌫C ], ⌫2 ⇡

1
p
2
[(�1 +�)⌫ + (1 +�)⌫C ]

=) if we have a small mass splitting due to deviations from the Dirac limit, we

obtain two massive Majorana which don’t exactly add up to one single Dirac neutrino.

This induces high frequency oscillations as well as small sources of lepton number

violation.

=) Quasi-Dirac neutrinos
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Motivation



Motivation

Why do we care?

• Soft probes for lepton number violation

• Would allow us to obtain neutrinos that behave almost like a Dirac particle

without the need for very small Yukawa couplings

How can we probe them?

• We introduced two quasi-dirac neutrinos in addition to the three SM active

neutrinos and studied their oscillations at Long and Short Baseline experiments
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Results

Long Baseline experiments
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Figure 1: 3 and 5 neutrino oscillations at NOvA. The mass splitting induces rapid oscillations

which influence P(⌫µ ! ⌫e).

Short Baseline experiments In SBL, oscillations due to atmospheric and solar mass

splittings are neglected, m1 = m2 = m3 such that

P(⌫µ ! ⌫e) = 4
��U2

µ4

����U2
e4

�� sin2 x41 + 4
��U2

µ5

����U2
e5

�� sin2 x51
+ 8|Uµ5||Ue5||Uµ4||Ue4| sin x41 sin x51 cos(x54 � �45),

i.e the oscillations only depend on the quasi-dirac neutrinos.
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Questions?
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Backup slides
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3 + 2 neutrino model

We consider a five-flavour neutrino model, and introduce two sterile neutrinos ⌫s1, ⌫s2
in addition to the SM 3 active ones.

To switch between the weak and mass eigenbasis, we again need a unitary matrix U.

Because we have 5 eigenstates here,

U = R(✓45,�45)R(✓35,�35)...R(✓23,�23)R(✓13,�13)R(✓12,�12) (1)

R(✓ab,�ab) is the matrix of complex rotations in the a� b plane.

... and from this we can determine oscillations at neutrino experiments
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Short Baseline experiments

In Short Baseline experiments, oscillations due to atmospheric and solar mass

splittings are neglected, such that we can set m1 = m2 = m3. In this case,

P(⌫µ ! ⌫e) = 4
��U2

µ4

����U2
e4

�� sin2 x41 + 4
��U2

µ5

����U2
e5

�� sin2 x51 (2)

+ 8|Uµ5||Ue5||Uµ4||Ue4| sin x41 sin x51 cos(x54 � �45), (3)

where

�45 = arg(U⇤
µ5Ue5Uµ4U

⇤
e4) and xij =

�m
2
ij
L

4E
, (4)

=) so for SB experiments, the oscillation is only dependent on the active/sterile

mixing parameters.
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Simulating the model at NOvA

The MSW E↵ect

In the NOvA detector, neutrinos interact with matter as they propagate.

We assume that only e
� are present in the detector: they induce a CC potential VCC

which ⌫e is subject to and a NC potential VNC which all the active neutrinos are

subject to.

The Hamiltonian becomes

H
0 = H0 + V =

1

2E
(UM2

U
† + V ), where V = diag(2EVCC , 0, 0,�2EVNC ,�2EVNC )
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Simulating the model at NOvA

Oscillation Probability P(⌫µ ! ⌫e)
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• P(⌫µ ! ⌫e) fluctuates

considerably more than in the

3⌫ case. This is because of

the small �m
2
45 which results

in the superposition of two

waves of similar wavelengths

and frequencies.

• Larger values of �m
2
45 induce

a higher amplitude and

wavepackets with a higher

frequency.

• Larger values of sin2(✓sa) give

rise to a large envelope and a

higher average amplitude.

• As ✓sa and �m
2
54 ! 0, we

approach the 3⌫ model.
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