

High-energy e+e- colliders

Philip Burrows

Oxford University

Director, John Adams Institute for Accelerator Science

ILC: <u>https://linearcollider.org</u> CLIC: <u>https://clic.cern</u> FCC: <u>https://home.cern/science/accelerators/future-circular-collider</u> CEPC: <u>http://cepc.ihep.ac.cn/</u>

Outline

- Introduction + overview
- •FCCee / CEPC
- •ILC
- CLIC
- •UK R&D + technology capability
- Outlook

Large Electron-Positron Collider (LEP)

up to c. 100 GeV per beam

Discovered Elder et al 1947 (General Electric)

Power lost due to synchrotron radiation $P_{SR} \sim \gamma^4 / \rho^2$

 $\gamma = E / m_0$, $\rho = radius of trajectory$

Power lost due to synchrotron radiation $P_{SR} \sim \gamma^4 / \rho^2$

 $\gamma = E / m_0$, $\rho = radius of trajectory$

For LEP (100 GeV, 27km) each electron would lose ~ 3 GeV / turn

Power lost due to synchrotron radiation $P_{SR} \sim \gamma^4 / \rho^2$

 $\gamma = E / m_0$, $\rho = radius of trajectory$

For LEP (100 GeV, 27km) each electron would lose ~ 3 GeV / turn P = 10⁻⁶ Watts/electron → 18 MW total

Power lost due to synchrotron radiation $P_{SR} \sim \gamma^4 / \rho^2$

- $\gamma = E / m_0$, $\rho = radius of trajectory$
- For LEP (100 GeV, 27km) each electron would lose ~ 3 GeV / turn
 P = 10⁻⁶ Watts/electron → 18 MW total
 → compensate with RF cavities

Suppose we increase LEP beam energy (100 GeV) by factor 5: E \rightarrow 500 GeV, in the same tunnel

 $P_{SR} \sim \gamma^4 / \rho^2$

Suppose we increase LEP beam energy (100 GeV) by factor 5: E \rightarrow 500 GeV, in the same tunnel

$$P_{SR} \sim \gamma^4 \, / \rho^2$$

 γ increases by factor 5, so P increases by 5^4

this would give $P_{SR} = 5^4 \times 18 \text{ MW} = 11 \text{ GW}!$

Compensate by increasing radius ρ ? Need 10 x ρ to reduce P_{SR} by 100 \rightarrow 270km tunnel!

SLAC Linear Collider (SLC)

c. 50 GeV per beam

SLAC Linear Collider (SLC)

Luminosity vs c.m. energy

Fig. 10.2: Luminosity versus c.m. energy for e^+e^- Higgs Factories. Two IPs are assumed for the circular colliders FCC-ee and CEPC.

Collider options

Collider	Туре	\sqrt{s}	Ф [%]	N _{Det}	$\mathscr{L}_{inst}/Det.$	L	Time	Ref.
			$[e^{-}/e^{+}]$		$[10^{34} \text{cm}^{-2} \text{s}^{-1}]$	$[ab^{-1}]$	[years]	
HL-LHC	рр	14 TeV	_	2	5	6.0	12	[23]
HE-LHC	pp	27 TeV	-	2	16	15.0	20	[23]
FCC-hh	pp	100 TeV	_	2	30	30.0	25	[637]
FCC-ee	ee	M_Z	0/0	2	100/200	150	4	[637]
		$2M_W$	0/0	2	25	10	1-2	
		240 GeV	0/0	2	7	5	3	
		$2m_{top}$	0/0	2	0.8/1.4	1.5	5	
	(1y SD befor		(+1)				
ILC	ee	250 GeV	$\pm 80/\pm 30$	1	1.35/2.7	2.0	11.5	[342]
		350 GeV	$\pm 80/\pm 30$	1	1.6	0.2	1	[346]
		500 GeV	$\pm 80/\pm 30$	1	1.8/3.6	4.0	8.5	
	(1	y SD after 2	250 GeV rur	I)			(+1)	
CEPC	ee	M_Z	0/0	2	17/32	16	2	[509]
		$2M_W$	0/0	2	10	2.6	1	
		240 GeV	0/0	2	3	5.6	7	
CLIC	ee	380 GeV	$\pm 80/0$	1	1.5	1.0	8	[638]
		1.5 TeV	$\pm 80/0$	1	3.7	2.5	7	
		3.0 TeV	$\pm 80/0$	1	6.0	5.0	8	
	(2y S	SDs betwee	n energy sta	ges)			(+4)	
LHeC	ep	1.3 TeV	_	1	0.8	1.0	15	[636]
HE-LHeC	ep	1.8 TeV	_	1	1.5	2.0	20	[637]
FCC-eh	ep	3.5 TeV	_	1	1.5	2.0	25	[637]

e+e- collider options

Collider	Туре	\sqrt{s}	<i>Э</i> [%]	N _{Det}	$\mathscr{L}_{inst}/Det.$	L	Time	Ref.
			$[e^{-}/e^{+}]$		$[10^{34} \text{cm}^{-2} \text{s}^{-1}]$	$[ab^{-1}]$	[years]	
FCC-ee	ee	M_Z	0/0	2	100/200	150	4	[637]
		$2M_W$	0/0	2	25	10	1-2	
		240 GeV	0/0	2	7	5	3	
		$2m_{top}$	0/0	2	0.8/1.4	1.5	5	
	(1y SD befor		(+1)				
ILC	ee	250 GeV	$\pm 80/\pm 30$	1	1.35/2.7	2.0	11.5	[342]
		350 GeV	$\pm 80/\pm 30$	1	1.6	0.2	1	[346]
		500 GeV	$\pm 80/\pm 30$	1	1.8/3.6	4.0	8.5	
	(1	y SD after	250 GeV rui	n)			(+1)	
CEPC	ee	M_Z	0/0	2	17/32	16	2	[509]
		$2M_W$	0/0	2	10	2.6	1	
		240 GeV	0/0	2	3	5.6	7	
CLIC	ee	380 GeV	$\pm 80/0$	1	1.5	1.0	8	[638]
		1.5 TeV	$\pm 80/0$	1	3.7	2.5	7	
		3.0 TeV	$\pm 80/0$	1	6.0	5.0	8	
	(2y	SDs betwee		(+4)				

Luminosity around 250 GeV

Collider	Туре	\sqrt{s}	<i>Э</i> [%]	N _{Det}	$\mathscr{L}_{inst}/Det.$	L	Time	Ref.
			$[e^{-}/e^{+}]$		$[10^{34} \text{cm}^{-2} \text{s}^{-1}]$	$[ab^{-1}]$	[years]	
FCC-ee	ee	M_Z	0/0	2	100/200	150	4	[637]
		$2M_W$	0/0	2	25	10	1-2	
		240 GeV	0/0	2	7	5	3	
		$2m_{top}$	0/0	2	0.8/1.4	1.5	5	
	(1y SD befor	re 2m _{top} run)			(+1)	
ILC	ee	250 GeV	$\pm 80/\pm 30$	1	1.35/2.7	2.0	11.5	[342]
		350 GeV	$\pm 80/\pm 30$	1	1.0	0.2	1	[346]
		500 GeV	$\pm 80/\pm 30$	1	1.8/3.6	4.0	8.5	
	(1	y SD after 2	250 GeV rui	n)			(+1)	
CEPC	ee	M_Z	0/0	2	17/32	16	2	[509]
		$2M_W$	0/0	2	10	2.6	1	
		240 GeV	0/0	2	3	5.6	7	
CLIC	ee	380 GeV	$\pm 80/0$	1	1.5	1.0	8	[638]
		1.5 TeV	$\pm 80/0$	1	3.7	2.5	7	
		3.0 TeV	$\pm 80/0$	1	6.0	5.0	8	
	(2y	SDs betwee		(+4)				

Luminosity around 350 GeV

Collider	Туре	\sqrt{s}	<i>Э</i> [%]	N _{Det}	$\mathscr{L}_{inst}/Det.$	L	Time	Ref.
			$[e^{-}/e^{+}]$		$[10^{34} \mathrm{cm}^{-2} \mathrm{s}^{-1}]$	$[ab^{-1}]$	[years]	
FCC-ee	ee	M_Z	0/0	2	100/200	150	4	[637]
		$2M_W$	0/0	2	25	10	1-2	
		240 GeV	0/0	2	7	5	3	
		$2m_{top}$	0/0	2	0.8/1.4	1.5	5	
	(1y SD befor		(+1)				
ILC	ee	250 GeV	$\pm 80/\pm 30$	1	1 25/2 7	2.0	11.5	[342]
		350 GeV	$\pm 80/\pm 30$	1	1.6	0.2	1	[346]
		500 GeV	$\pm 80/\pm 30$	1	1.8/3.0	4.0	8.5	
	(1	y SD after	250 GeV rui	n)			(+1)	
CEPC	ee	M_Z	0/0	2	17/32	16	2	[509]
		$2M_W$	0/0	2	10	2.6	1	
		240 GeV	0/0	2	3	5.6	7	
CLIC	ee	380 GeV	$\pm 80/0$	1	1.5	1.0	8	[638]
		1.5 TeV	$\pm 80/0$	1	5.7	2.5	7	
		3.0 TeV	$\pm 80/0$	1	6.0	5.0	8	
	(2y	SDs betwee		(+4)				

500 GeV and above

Collider	Туре	\sqrt{s}	P [%]	N _{Det}	$\mathscr{L}_{inst}/Det.$	L	Time	Ref.
			$[e^{-}/e^{+}]$		$[10^{34} \text{cm}^{-2} \text{s}^{-1}]$	$[ab^{-1}]$	[years]	
FCC-ee	ee	M_Z	0/0	2	100/200	150	4	[637]
		$2M_W$	0/0	2	25	10	1-2	
		240 GeV	0/0	2	7	5	3	
		$2m_{top}$	0/0	2	0.8/1.4	1.5	5	
	(1y SD befor		(+1)				
ILC	ee	250 GeV	$\pm 80/\pm 30$	1	1.35/2.7	2.0	11.5	[342]
		350 GeV	$\pm 80/\pm 30$	1	1.6	0.2	1	[346]
		500 GeV	$\pm 80/\pm 30$	1	1.8/3.6	4.0	8.5	
	(1	y SD after	250 GeV rui	n)			(+1)	
CEPC	ee	M_Z	0/0	2	17/32	16	2	[509]
		$2M_W$	0/0	2	10	2.6	1	
		240 GeV	0/0	2	3	5.6	7	
CLIC	ee	380 GeV	$\pm 80/0$	1	15	1.0	8	[638]
		1.5 TeV	$\pm 80/0$	1	3.7	2.5	7	
		3.0 TeV	$\pm 80/0$	1	6.0	5.0	8	
	(2y	SDs betwee		(+4)				

Around 91 GeV

Collider	Туре	\sqrt{s}	P [%]	N _{Det}	$\mathscr{L}_{inst}/Det.$	L	Time	Ref.	
			$[e^{-}/e^{+}]$		$[10^{34} \text{ cm}^{-2} \text{ s}^{-1}]$	$[ab^{-1}]$	[years]		ļ
FCC-ee	ee	M_Z	0/0	2	100/200	150	4	[637]	Tera Z
		$2M_W$	0/0	2	23	10	1-2		
		240 GeV	0/0	2	7	5	3		
		$2m_{top}$	0/0	2	0.8/1.4	1.5	5		
	(1y SD befor	re 2m _{top} run)			(+1)		
ILC	ee	250 GeV	$\pm 80/\pm 30$	1	1.35/2.7	2.0	11.5	[342]]
		350 GeV	$\pm 80/\pm 30$	1	1.6	0.2	1	[346]	
		500 GeV	$\pm 80/\pm 30$	1	1 9/2 6	4.0	8.5		
		91 GeV			0.2/0.4				Giga Z
CEPC	ee	M_Z	0/0	2	1//32	16	2	[509]]
		$2M_W$	0/0	2	10	2.6	1		
		240 GeV	0/0	2	3	5.6	7		
CLIC	ee	380 GeV	$\pm 80/0$	1	1.5	1.0	8	[638]	1
		1.5 TeV	$\pm 80/0$	1	3.7	2.5	7		
		3.0 TeV	$\pm 80/0$	1	6.0	5.0	8		
	(2y	SDs betwee	n energy sta	iges)			(+4)		

Number of IPs

Collider	Туре	\sqrt{s}	P [%]	N _{Det}	$\mathscr{L}_{inst}/Det.$	L	Time	Ref.	Ì
			$[e^{-}/e^{+}]$		$[10^{34} \mathrm{cm}^{-2} \mathrm{s}^{-1}]$	$[ab^{-1}]$	[years]		
FCC-ee	ee	M_Z	0/0	2	100/200	150	4	[637]	
		$2M_W$	0/0	2	25	10	1-2		4 also
		240 GeV	0/0	2	7	5	3		nossible
		$2m_{top}$	0/0	2	0.8/1.4	1.5	5		
	((1y SD befor	re 2m _{top} run	,			(+1)		
ILC	ee	250 GeV	$\pm 80/\pm 30$	1	1.35/2.7	2.0	11.5	[342]	
		350 GeV	$\pm 80/\pm 30$	1	1.6	0.2	1	[346]	Z also
		500 GeV	$\pm 80/\pm 30$	1	1.8/3.6	4.0	8.5		possible
	(1y SD after	250 GeV ru	r,			(+1)		
CEPC	ee	M_Z	0/0	2	17/32	16	2	[509]	4 also
		$2M_W$	0/0	2	10	2.6	1		nossihle
		240 GeV	0/0	2	3	5.6	7		pessible
CLIC	ee	380 GeV	$\pm 80/0$	1	1.5	1.0	8	[638]	
		1.5 TeV	$\pm 80/0$	1	3.7	2.5	7		Zaiso
		3.0 TeV	$\pm 80/0$	1	6.0	5.0	8		possible
	(2y	SDs betwee	n energy sta	lges)			(+4)		

Longitudinal beam polarisation

Collider	Туре	\sqrt{s}	P [%]	N _{Det}	$\mathscr{L}_{inst}/Det.$	L	Time	Ref.
			$[e^{-}/e^{+}]$		$[10^{34} \text{cm}^{-2} \text{s}^{-1}]$	$[ab^{-1}]$	[years]	
FCC-ee	ee	M_Z	0/0	2	100/200	150	4	[637]
		$2M_W$	0/0	2	25	10	1-2	
		240 GeV	0/0	2	7	5	3	
		$2m_{top}$	0/0	2	0.8/1.4	1.5	5	
	(1y SD before $2m$ run)						(+1)	
ILC	ee	250 GeV	$\pm 80/\pm 30$) 1	1.35/2.7	2.0	11.5	[342]
		350 GeV	$\pm 80/\pm 30$) 1	1.6	0.2	1	[346]
		500 GeV	$\pm 80/\pm 30$) 1	1.8/3.6	4.0	8.5	
	(1	y SD afte <mark>r</mark>	250 GeV ri	ın)			(+1)	
CEPC	ee	M_Z	0/0	2	17/32	16	2	[509]
		$2M_W$	0/0	2	10	2.6	1	
		240 GeV	0/0	2	3	5.6	7	
CLIC	ee	380 GeV	$\pm 80/0$	1	1.5	1.0	8	[638]
		1.5 TeV	$\pm 80/0$		3.7	2.5	7	
		3.0 TeV	$\pm 80/0$	1	6.0	5.0	8	
	(2y	SDs betwee		(+4)				

Beam polarisation is an essential tool

G. Hamel de Monchenault SPC 24/9/24

Future Circular Collider

Future Circular Collider

Feasibility Study due to report March 2025

FCC baseline run plan

Parameter	Z	ww	H (ZH)	ttbar
beam energy [GeV]	45.6	80	120	182.5
beam current [mA]	1270	137	26.7	4.9
number bunches/beam	11200	1780	440	60
bunch intensity [10 ¹¹]	2.14	1.45	1.15	1.55
SR energy loss / turn [GeV]	0.0394	0.374	1.89	10.4
total RF voltage 400/800 MHz [GV]	0.120/0	1.0/0	2.1/0	2.1/9.4
long. damping time [turns]	1158	215	64	18
horizontal beta* [m]	0.11	0.2	0.24	1.0
vertical beta* [mm]	0.7	1.0	1.0	1.6
horizontal geometric emittance [nm]	0.71	2.17	0.71	1.59
vertical geom. emittance [pm]	1.9	2.2	1.4	1.6
horizontal rms IP spot size [µm]	9	21	13	40
vertical rms IP spot size [nm]	36	47	40	51
beam-beam parameter ξ_x / ξ_y	0.002/0.0973	0.013/0.128	0.010/0.088	0.073/0.134
rms bunch length with SR / BS [mm]	5.6 / 15.5	3.5 / <mark>5.4</mark>	3.4 / 4.7	1.8 / <mark>2.2</mark>
luminosity per IP [10 ³⁴ cm ⁻² s ⁻¹]	140	20	5.0	1.25
total integrated luminosity / IP / year [ab ⁻¹ /yr]	17	2.4	0.6	0.15
beam lifetime rad Bhabha + BS [min]	15	12	12	11
	4 years 5 x 10 ¹² Z LEP x 10 ⁵	2 years > 10 ⁸ WW LEP x 10 ⁴	3 years 2 x 10 ⁶ H	5 years 2 x 10 ⁶ tt pairs

FCC

CEPC

Table 3.2: CEPC operation plan (@ 50 MW)

Particle	E _{c.m} (GeV)	$L \text{ per IP} (10^{34} \text{ cm}^{-2} \text{s}^{-1})$	Integrated <i>L</i> per year (ab ⁻¹ , 2 IPs)	Years	Total Integrated L (ab ⁻¹ , 2 IPs)	Total no. of events
Η	240	8.3	2.2	10	21.6	$4.3 imes 10^6$
Ζ	91	192*	50	2	100	4.1×10^{12}
W	160	26.7	6.9	1	6.9	$2.1 imes 10^8$
tī**	360	0.8	0.2	5	1.0	0.6×10^{6}

TDR completed (Dec 2023) Awaiting decision on inclusion in next 5-year plan 2026-2030 Could be operational mid 2030s

Linear Colliders

ILC Technical Design Report (June 2013) baseline 500 GeV: \$6.7B (2010) + 13,000 person-years

THE INTERNATIONAL LINEAR COLLIDER

TECHNICAL DESIGN REPORT | VOLUME 3.1: ACCELERATOR R&D

https://linearcollider.org/technical-designreport/

Volume 3 – Accelerator Part I: R&D in the Technical Design Phase Part II: Baseline Design

Editors

Chris Adolphsen, Maura Barone, Barry Barish, Karsten Buesser, Phil Burrows, John Carwardine (Editorial Board Chair), Jeffrey Clark, Helene Mainaud Durand, Gerry Dugan, Eckhard Elsen, Atsuto Enomoto, Brian Foster, Shigeki Fukuda, Wei Gai, Martin Gastal, Rongli Geng, Camille Ginsburg, Susanna Guiducci, Mike Harrison, Hitoshi Hayano, Keith Kershaw, Kiyoshi Kubo, Vic Kuchler, Benno List, Wanming Liu, Shinichiro Michizono, Christopher Nantista, John Osborne, Mark Palmer, James McEwan Paterson, Thomas Peterson, Nan Phinney, Paolo Pierini, Marc Ross, David Rubin, Andrei Seryi, John Sheppard, Nikolay Solyak, Steinar Stapnes, Toshiaki Tauchi, Nobu Toge, Nicholas Walker, Akira Yamamoto, Kaoru Yokoya

ILC 2017/8

8,000 1.3GHz

SRF cavities @ 2K

Physics Detectors

Item	Parameters
C.M. Energy	250 GeV
Length	20km
Luminosity	1.35 x10 ³⁴ cm ⁻² s ⁻¹
Repetition	5 Hz
Beam Pulse Period	0.73 ms
Beam Current	5.8 mA (in pulse)
Beam size (y) at FF	7.7 nm@250GeV
SRF Cavity G.	31.5 MV/m (35 MV/m) Q ₀ = 1x10 ¹⁰

Beam delivery system (BDS)

e- Source

e+ Main Linac

Total 20.5

- Cost ~ \$5B (2010) UPDATE IN PROGRESS
- Power ~ 111 MW FOR EPPSU MARCH 25

Damping Ring

e+ Source

e- Main Linac

Largest deployment of SCRF technology

- 100 cryomodules
- 800 cavities
- 17.5 GeV
- First beams 2016

Candidate site proposed by Japanese researchers

ILC project status

- April 2022: ICFA extended International Development Team (IDT) mandate
- April 2023 MEXT increased ILC budget at KEK, IDT has identified 'time-critical' work packages and initiated collaboration among KEK and international partners

 ILC Technology Network
- 'International Expert Panel' reviewed models for realising a large global project such as ILC; informal conversations involving funding agencies
- Cost update in progress (for input to European Strategy ~ March 2025):

250, 350, 500/550 GeV stages inflation, exchange rate changes cryomodules: experience from EU-XFEL, LCLS-II-HE + industry

→ cost in 2023 US\$ using methodology that allows currency translation

CLIC overview

- Timeline: e+e- linear collider at CERN for the era beyond HL-LHC
- Compact: novel and unique two-beam accelerating technique based on high-gradient room-temperature X-band RF cavities:

first stage: 380 GeV, ~11km long, 20,500 cavities

• Expandable: staged collision energies from 380 GeV (Higgs/top) up to 3 TeV

CLIC overview

- Timeline: e+e- linear collider at CERN for the era beyond HL-LHC
- Compact: novel and unique two-beam accelerating technique based on high-gradient room temperature RF cavities: first stage: 380 GeV, ~11km long, 20,500 cavities
- Expandable: staged collision energies from 380 GeV (Higgs/top) up to 3 TeV
- Conceptual Design Report published in 2012
- Project Implementation Plan released in 2018: Cost: 5.9 BCHF for 380 GeV
- Status report: Snowmass 'white paper' 2022: https://arxiv.org/abs/2203.0918
- Preparing CLIC Readiness Report for 2026 European PP Strategy Update

CLIC 380 GeV layout

Baseline electron polarisation ±80%

CLIC 3 TeV layout

Baseline electron polarisation ±80%

CLIC project readiness → 2025/26

X-band studies: For CLIC and applications in smaller linacs Luminosity: Beam-dynamics studies and related hardware optimisation for nano beams

RF efficiency and sustainability studies **CLIC Readiness Report will include:**

•380 GeV + 2 TeV (single drive beam); also 250 GeV @ 100Hz

•Luminosity performance update, including beam dynamics, nanobeam studies, and positron production (all energies)

•Energy, power, sustainability ...

•Sustainability issues: running/energy models, CO2-eq Life Cycle Assessment (LCA): construction + operation + decommissioning

•RF design optimization/development – including injectors, R&D for higher gradients - links to wakefield acceleration where relevant

•Cost update w.r.t. to 2018, including impacts of more sustainable design

UK strongly committed to European Strategy priority of an e+e- 'Higgs Factory'

2004-12: £18M investment in Global Design Effort → ILC TDR

UK capability:

Positron source

Damping rings

Beam Delivery + Mach/Det Interface Beam dumps

International Development Team

ILC Technology Network (with CERN)

UK strongly committed to European Strategy priority of an e+e- 'Higgs Factory'

2004-12: £18M investment in Global Design Effort → ILC TDR UK capability: Positron source Damping rings Beam Delivery + Mach/Det Interface Beam dumps

UK capability: Permanent magnets Linac RF systems Beam Delivery + Mach/Det Interface Instrumentation

International Development Team ILC Technology Network (with CERN) CLIC Project Readiness Report

Input to EPPSU 2026

UK strongly committed to European Strategy priority of an e+e- 'Higgs Factory'

2004-12: £18M investment in Global Design Effort → ILC TDR UK capability:

Positron source Damping rings Beam Delivery + Mach/Det Interface Beam dumps

2011-18: £14M investment joint with CERN \rightarrow CLIC CDR + PIP

UK capability: Permanent magnets Linac RF systems Beam Delivery + Mach/Det Interface Instrumentation

→ deployed on HL-LHC, AWAKE, FCCee, Diamond, UK-XFEL

International Development Team
ILC Technology Network (with CERN)

CLIC Project Readiness Report

Input to EPPSU 2026

UK strongly committed to European Strategy priority of an e+e- 'Higgs Factory'

2004-12: £18M investment in Global Design Effort → ILC TDR UK capability:

Positron source Damping rings Beam Delivery + Mach/Det Interface Beam dumps

Compact Linear Collider (CLIC) 380 GeV - 11.4 km (CLIC380) 1.5 TeV - 29.0 km (CLIC500) 3.0 TeV - 50.1 km (CLIC300) LHC LHC CLIC380 CLIC1500 CERN Geneva

2011-18: £14M investment joint with CERN \rightarrow CLIC CDR + PIP

UK capability: Permanent magnets Linac RF systems Beam Delivery + Mach/Det Interface Instrumentation 2015-19: EuroCircol: Beam dynamics + lattice design

2021-25: FCCIS

→ deployed on HL-LHC, AWAKE, FCCee, Diamond, UK-XFEL

International Development Team ILC Technology Network (with CERN) CLIC Project Readiness Report Input to EPPSU 2026 Feasibility study:

JAI working on main ring BPMs and collision feedback system 43

Hybrid Asymmetric Linear Higgs Factory (HALHF)

Foster, D'Arcy and Lindstrøm, New J. Phys. 25, 093037 (2023) Lindstrøm, D'Arcy and Foster, arXiv:2312.04975

Directly capitalises on UK expertise in wakefield acceleration and linear collider systems

→ Richard D'Arcy's talk

Outlook

Circular e+e- collider designs spanning 91 GeV → 360 GeV are at an advanced stage:
FCC(ee) Feasibility Study will report March 2025
CERN resources identified in MTP for 'pre-TDR' phase prior to any decision to proceed
DG / FCC schedule foresees a Council decision ~ 2028, FCCee operation ~ 2048 → 2066
CEPC TDR completed, in consideration for implementation in next '5-year plan'

Linear Colliders offer a flexible, staged approach to energy frontier in e+e- collisions: straightforward energy upgrade path 250 GeV → 500+ GeV and 1 TeV and beyond linear facility reusable as technology improves, eg. ILC → CLIC → plasma wakefield ... complementary to long-term future hadron or muon colliders 'LC Vision' in preparation for EPPSU

→ Cost and environmental sustainability will be important factors in decision-making

Towards CLIC Carbon Accounting via Life Cycle Assessment

Steinar Stapnes

Environmental impact

Will be a major consideration for any new facility

Eg. Study by Breidenbach et al, PRX Energy 2 047001 (Oct 2023):

Environmental impact

Will be a major consideration for any new facility

Eg. Study by Breidenbach et al, PRX Energy 2 047001 (Oct 2023):

Detailed life-cycle assessment (LCA)

Consistent basis

Using industry standards for CO2eq costs for construction, operation + decommissioning

LCA in progress for ILC, CLIC, FCCee

Schedules?

Thanks to many colleagues

Extra material

Costs?

All numbers provisional – expect updates for ESPPU:

FCCee: Feasibility Study interim report (Oct 2023) - CERN core cost:

240 GeV, 2 IPs, no detectors	12.8	B BChF
350 GeV, 4 IPs, no detectors	15	BChF

ILC: TDR cost (2010 US\$):

500 GeV, 1 IP, no detector (2013) 250 GeV, 1 IP, no detector (2018)

\$6.7B capital + 13,000 years labour\$5B capital

CLIC: Project Implementation Plan (2018) - CERN core cost: 380 GeV, 1 IP, no detector 5.9 BChF

Extra material:

ILC

ILC baseline

Quantity	Symbol	Unit	Initial	\mathcal{L} Upgrade	Z pole	\mathbf{U}_{I}	pgrades	
Centre of mass energy	\sqrt{s}	GeV	250	250	91.2	500	250	1000
Luminosity	${\cal L}$ 10 ³⁴	$\mathrm{cm}^{-2}\mathrm{s}^{-1}$	1.35	2.7	0.21/0.41	1.8/3.6	5.4	5.1
Polarization for e^-/e^+	$P_{-}(P_{+})$	%	80(30)	80(30)	80(30)	80(30)	80(30)	80(20)
Repetition frequency	$f_{ m rep}$	Hz	5	5	3.7	5	10	4
Bunches per pulse	$n_{ m bunch}$	1	1312	2625	1312/2625	1312/2625	2625	2450
Bunch population	$N_{ m e}$	10^{10}	2	2	2	2	2	1.74
Linac bunch interval	$\Delta t_{ m b}$	\mathbf{ns}	554	366	554/366	554/366	366	366
Beam current in pulse	I_{pulse}	$\mathbf{m}\mathbf{A}$	5.8	8.8	5.8/8.8	5.8/8.8	8.8	7.6
Beam pulse duration	$t_{\rm pulse}$	μs	727	961	727/961	727/961	961	897
Average beam power	\dot{P}_{ave}	MW	5.3	10.5	$1.42/2.84^{*)}$	10.5/21	21	27.2
RMS bunch length	$\sigma_{ m z}^*$	$\mathbf{m}\mathbf{m}$	0.3	0.3	0.41	0.3	0.3	0.225
Norm. hor. emitt. at IP	$\gamma \epsilon_{\mathrm{x}}$	$\mu { m m}$	5	5	5	5	5	5
Norm. vert. emitt. at IP	$\gamma \epsilon_{ m y}$	nm	35	35	35	35	35	30
RMS hor. beam size at IP	σ^*_{x}	$\mathbf{n}\mathbf{m}$	516	516	1120	474	516	335
RMS vert. beam size at IP	$\sigma^*_{ m v}$	$\mathbf{n}\mathbf{m}$	7.7	7.7	14.6	5.9	7.7	2.7
Luminosity in top 1%	$\mathcal{L}_{0.01}/\mathcal{L}$		73%	73%	99%	58.3%	73%	44.5%
Beamstrahlung energy loss	$\delta_{ m BS}$		26%	2.6%	0.16%	4.5%	2.6%	10.5%
Site AC power	P_{site}	MW	111	138	94/115	173/215	198	300
Site length	L_{site}	\mathbf{km}	20.5	20.5	20.5	31	31	40

ILC upgrade options

Quantity	Symbol	Unit	Initial	\mathcal{L} Upgrade	Z pole	Ul	ogrades	
Centre of mass energy	\sqrt{s}	GeV	250	250	91.2	500	250	1000
Luminosity	\mathcal{L} 10 ³⁴	$\mathrm{cm}^{-2}\mathrm{s}^{-1}$	1.35	2.7	0.21/0.41	1.8/3.6	5.4	5.1
Polarization for e^-/e^+	$P_{-}(P_{+})$	%	80(30)	80(30)	80(30)	80(30)	80(30)	80(20)
Repetition frequency	$f_{ m rep}$	Hz	5	5	3.7	5	10	4
Bunches per pulse	$n_{ m bunch}$	1	1312	2625	1312/2625	1312/2625	2625	2450
Bunch population	$N_{ m e}$	10^{10}	2	2	2	2	2	1.74
Linac bunch interval	$\Delta t_{ m b}$	\mathbf{ns}	554	366	554/366	554/366	366	366
Beam current in pulse	I_{pulse}	$\mathbf{m}\mathbf{A}$	5.8	8.8	5.8/8.8	5.8/8.8	8.8	7.6
Beam pulse duration	$t_{\rm pulse}$	μs	727	961	727/961	727/961	961	897
Average beam power	$P_{\rm ave}$	MW	5.3	10.5	$1.42/2.84^{*)}$	10.5/21	21	27.2
RMS bunch length	$\sigma^*_{ m z}$	$\mathbf{m}\mathbf{m}$	0.3	0.3	0.41	0.3	0.3	0.225
Norm. hor. emitt. at IP	$\gamma \epsilon_{\mathrm{x}}$	$\mu { m m}$	5	5	5	5	5	5
Norm. vert. emitt. at IP	$\gamma \epsilon_{ m y}$	nm	35	35	35	35	35	30
RMS hor. beam size at IP	σ^*_{x}	$\mathbf{n}\mathbf{m}$	516	516	1120	474	516	335
RMS vert. beam size at IP	$\sigma^*_{ m v}$	$\mathbf{n}\mathbf{m}$	7.7	7.7	14.6	5.9	7.7	2.7
Luminosity in top 1%	$\mathcal{L}_{0.01}/\mathcal{L}$		73%	73%	99%	58.3%	73%	44.5%
Beamstrahlung energy loss	$\delta_{ m BS}$		26%	26%	0.16%	4.5%	2.6%	10.5%
Site AC power	P_{site}	MW	111	138	94/115	173/215	198	300
Site length	$L_{\rm site}$	\mathbf{km}	20.5	20.5	20.5	31	31	40

ILC upgrade options Luminosity II

Quantity	Symbol	Unit	Initial	\mathcal{L} Upgrade	Z pole	U	grades	
Centre of mass energy	\sqrt{s}	GeV	250	250	91.2	500	250	1000
Luminosity	$\mathcal{L} = 10^{34}$	${ m cm}^{-2}{ m s}^{-1}$	1.35	2.7	0.21/0.41	1.8/3.6	5.4	5.1
Polarization for e^-/e^+	$P_{-}(P_{+})$	%	80(30)	80(30)	80(30)	80(30)	80(30)	80(20)
Repetition frequency	$f_{ m rep}$	Hz	5	5	3.7	5	10	4
Bunches per pulse	n_{bunch}	1	1312	2625	1312/2625	1312/2625	2625	2450
Bunch population	$N_{ m e}$	10^{10}	2	2	2	2	2	1.74
Linac bunch interval	$\Delta t_{ m b}$	\mathbf{ns}	554	366	554/366	554/366	366	366
Beam current in pulse	$I_{\rm pulse}$	$\mathbf{m}\mathbf{A}$	5.8	8.8	5.8/8.8	5.8/8.8	8.8	7.6
Beam pulse duration	$t_{\rm pulse}$	μs	727	961	727/961	727/961	961	897
Average beam power	\hat{P}_{ave}	MW	5.3	10.5	$1.42/2.84^{*)}$	10.5/21	21	27.2
RMS bunch length	$\sigma^*_{ m z}$	$\mathbf{m}\mathbf{m}$	0.3	0.3	0.41	0.3	0.3	0.225
Norm. hor. emitt. at IP	$\gamma \epsilon_{\mathrm{x}}$	$\mu { m m}$	5	5	5	5	5	5
Norm. vert. emitt. at IP	$\gamma \epsilon_{ m y}$	nm	35	35	35	35	35	30
RMS hor. beam size at IP	σ^*_{x}	$\mathbf{n}\mathbf{m}$	516	516	1120	474	516	335
RMS vert. beam size at IP	$\sigma_{ m v}^*$	$\mathbf{n}\mathbf{m}$	7.7	7.7	14.6	5.9	7.7	2.7
Luminosity in top 1%	$\mathcal{L}_{0.01}/\mathcal{L}$		73%	73%	99%	58.3%	73%	44.5%
Beamstrahlung energy loss	δ_{BS}		26%	26%	0.16%	4.5%	2.6%	10.5%
Site AC power	P_{site}	MW	111	138	94/115	173/215	198	300
Site length	L_{site}	\mathbf{km}	20.5	20.5	20.5	31	31	40

ILC upgrade options Energy I + II

Quantity	Symbol	Unit	Initial	\mathcal{L} Upgrade	Z pole	UI	grade	
Centre of mass energy	\sqrt{s}	GeV	250	250	91.2	500	250	1000
Luminosity	${\cal L} = 10^{34} { m cm}$	$cm^{-2}s^{-1}$	1.35	2.7	0.21/0.41	1.8/3.6	5.4	5.1
Polarization for e^{-}/e^{+}	$P_{-}(P_{+})$	%	80(80)	80(30)	80(30)	00(00)	80(30	30(20)
Repetition frequency	$f_{ m rep}$	Hz	5	5	3.7	5	10	4
Bunches per pulse	$n_{ m bunch}$	1	1312	2625	1312/2625	1312/2625	2625	2450
Bunch population	$N_{ m e}$	10^{10}	2	2	2	2	2	1.74
Linac bunch interval	$\Delta t_{ m b}$	\mathbf{ns}	554	366	554/366	554/366	366	366
Beam current in pulse	I_{pulse}	$\mathbf{m}\mathbf{A}$	5.8	8.8	5.8/8.8	5.8/8.8	8.8	7.6
Beam pulse duration	$t_{\rm pulse}$	μs	727	961	727/961	727/961	961	897
Average beam power	$P_{\rm ave}$	MW	5.3	10.5	$1.42/2.84^{*)}$	10.5/21	21	27.2
RMS bunch length	$\sigma^*_{ m z}$	$\mathbf{m}\mathbf{m}$	0.3	0.3	0.41	0.3	0.3	0.225
Norm. hor. emitt. at IP	$\gamma \epsilon_{ m x}$	$\mu { m m}$	5	5	5	5	5	5
Norm. vert. emitt. at IP	$\gamma \epsilon_{ m y}$	nm	35	35	35	35	35	30
RMS hor. beam size at IP	σ^*_{x}	nm	516	516	1120	474	516	335
RMS vert. beam size at IP	$\sigma^*_{ m v}$	nm	7.7	7.7	14.6	5.9	7.7	2.7
Luminosity in top 1%	$\mathcal{L}_{0.01}/\mathcal{L}$		73%	73%	99%	58.3%	73%	44.5%
Beamstrahlung energy loss	δ_{BS}		2.6%	2.6%	0.16%	4.5%	2.6%	10.5%
Site AC power	P_{site}	MW	111	138	94/115	172/915	198	300
Site length	$L_{ m site}$	\mathbf{km}	20.5	20.5	20.5	31	31	40

ILC upgrade options Energy III

Quantity	Symbol	Unit	Initial	\mathcal{L} Upgrade	Z pole	\mathbf{U}_{I}	pgrades	
Centre of mass energy	\sqrt{s}	GeV	250	250	91.2	500	250	1000
Luminosity	$\mathcal{L} = 10^{34}$	$\mathrm{cm}^{-2}\mathrm{s}^{-1}$	1.35	2.7	0.21/0.41	1.8/3.6	5.4	5.1
Polarization for e^-/e^+	$P_{-}(P_{+})$	%	80(30)	80(30)	00(00)	80(30)	80(30)	80(20)
Repetition frequency	$f_{ m rep}$	Hz	5	5	3.7	5	10	4
Bunches per pulse	$n_{ m bunch}$	1	1312	2625	1312/2625	1312/2625	2625	2450
Bunch population	$N_{ m e}$	10^{10}	2	2	2	2	2	1.74
Linac bunch interval	$\Delta t_{ m b}$	\mathbf{ns}	554	366	554/366	554/366	366	366
Beam current in pulse	I_{pulse}	$\mathbf{m}\mathbf{A}$	5.8	8.8	5.8/8.8	5.8/8.8	8.8	7.6
Beam pulse duration	$t_{\rm pulse}$	μs	727	961	727/961	727/961	961	897
Average beam power	\hat{P}_{ave}	MW	5.3	10.5	$1.42/2.84^{*)}$	10.5/21	21	27.2
RMS bunch length	$\sigma^*_{ m z}$	$\mathbf{m}\mathbf{m}$	0.3	0.3	0.41	0.3	0.3	0.225
Norm. hor. emitt. at IP	$\gamma \epsilon_{\mathrm{x}}$	$\mu { m m}$	5	5	5	5	5	5
Norm. vert. emitt. at IP	$\gamma \epsilon_{ m y}$	nm	35	35	35	35	35	30
RMS hor. beam size at IP	σ^*_{x}	$\mathbf{n}\mathbf{m}$	516	516	1120	474	516	335
RMS vert. beam size at IP	$\sigma_{\rm v}^*$	$\mathbf{n}\mathbf{m}$	7.7	7.7	14.6	5.9	7.7	2.7
Luminosity in top 1%	$\mathcal{L}_{0.01}/\mathcal{L}$		73%	73%	99%	58.3%	73%	44.5%
Beamstrahlung energy loss	$\delta_{ m BS}$		2.6%	2.6%	0.16%	4.5%	2.6%	10.5%
Site AC power	P_{site}	\mathbf{MW}	111	138	04/115	173/215	198	300
Site length	L_{site}	\mathbf{km}	20.5	20.5	20.5	31	31	40

Ongoing ILC technology developments

• Huge global interest in ILC-like SC RF systems:

eg. European XFEL, LCLS-II, Shanghai XFEL ...

- Nb cavity performance advancements made at many labs
- Improved fabrication techniques + surface treatments → prospects for higher gradient, Q, yield, also reductions in cost, cryo power ... advanced Nb sheet production advanced surface treatments longer-term: thin-film coatings on Cu → 4K vs. 2K operation
- ILC Technology Network ('ITN') advancing technical progress on linac RF, sources, damping rings, beam delivery system, dumps ...

ITN kickoff meeting @ CERN Oct 2023

ILC indicative schedule

ITN scope

ILC Technology Network

Not only for the **ILC** but also for **various application**

	SRF
•Creating particles Sou	irces
 polarized elections / positrons 	5
•High quality beams Dar	mping ring
 Low emittance beams 	e- e+
•Small beam size (small beam spread)	Sources
 Parallel beam (small momentum spread 	d)
•Acceleration Ma	in linac
 superconducting radio frequence 	¢γ (SRF)
•Getting them collided Final focus	Nano-
 nano-meter beams 	Beam
•Go to <i>Beam dumps</i>	-

WPP	1	Cavity production			
WPP	2	CM design			
WPP	3	Crab cavity			
WPP	4	E- source			
WPP	6	Undulator target			
WPP	7	Undulator focusing			
WPP	8	E-driven target			
WPP	9	E-driven focusing			
WPP	10	E-driven capture			
WPP	11	Target replacement			
WPP	12	DR System design			
WPP	14	DR Injection/extraction			
WPP	15	Final focus			
WPP	16	Final doublet			
WPP	17	Main dump			

LCWS2024 (Shin MICHIZONO)

ITN SC RF cavity development

WP-prime 1: SRF Cavity

(Scoping the Industrial-Production Readiness)

ILC cost update panel

Cost update task force members:

Gerry Dugan Benno List

Marc Ross

Hiroshi Sakai

Nobuhiro Terunuma

Nick Walker

Akira Yamamoto^{*)}

and from IDT EB Andy Lankford

Shinichiro Michizono Steinar Stapnes

*)Task Force leader

Extra material:

CLIC

CLIC parameters

Parameter	Unit	Stage 1	Stage 2	Stage 3
Centre-of-mass energy	GeV	380	1500	3000
Repetition frequency	Hz	50	50	50
Nb. of bunches per train		352	312	312
Bunch separation	ns	0.5	0.5	0.5
Pulse length	ns	244	244	244
Accelerating gradient	MV/m	72	72/100	72/100
Total luminosity	$1{ imes}10^{34}{ m cm}^{-2}{ m s}^{-1}$	2.3	3.7	5.9
Lum. above 99 % of \sqrt{s}	$1 \times 10^{34} \mathrm{cm}^{-2} \mathrm{s}^{-1}$	1.3	1.4	2
Total int. lum. per year	$\rm fb^{-1}$	276	444	708
Main linac tunnel length	km	11.4	29.0	50.1
Nb. of particles per bunch	1×10^{9}	5.2	3.7	3.7
Bunch length	μm	70	44	44
IP beam size	nm	149/2.0	$\sim\!\!60/1.5$	${\sim}40/1$
Final RMS energy spread	%	0.35	0.35	0.35
Crossing angle (at IP)	mrad	16.5	20	20 66

CLIC X-band structure development

Test structure

Achieved accelerating gradients in tests

- → Emphasis on industrialising processes via collaboration with manufacturers
- → Collaboration with C3

Beyond CLIC: global X-band deployment

Compact linacs have many uses:

- Research accelerators (e.g. FELs as main technology or special elements), in medical or industrial linacs
- Many/most of these developments are driven by CLIC collaborators, for their "local" applications

Main benefits for CLIC: much strengthened industrial base and strong increase in research/experience with X-band technology and associated components

- Trieste, FERMI: Linearizer
- SwissFEL: Linearizer and PolariX deflector
- SARI: Linearizer, deflectors
- CERN: XBox-1 with CLEAR, accelerator
- DESY: FLASHForward and FLASH2, PolariX deflectors
- SLAC: NLCTA, XTA
- Argonne: AWA

- KEK: NEXTEF
- CERN: XBox-2,3 and <u>SBox</u>
- Tsinghua: <u>TPot</u>
- Valencia: IFIC VBox
- Trieste: FRMI S-Band
- SLAC: Cryo-systems
- LANL: CERF-NM
- INFN Frascati: TEX
- Melbourne: AusBox

- TU Eindhoven: SMART*LIGHT, ICS
- Tsinghua: VIGAS, ICS
- CERN: AWAKE electron injector
- INFN Frascati: <u>EuPRAXIA@SPARC_LAB</u>, accelerator
- DESY: SINBAD/ARES, deflector
- CHUV/CERN: DEFT, medical accelerator
- Daresbury: CLARA, linearizer
- Trieste: FERMI energy upgrade

CLIC timeline

Technology-driven schedule from start of construction shown above.

A preparation phase of ~5 years is needed beforehand (estimated resource needed ~4% of overall project cost)

CLIC European Strategy 2020 Inputs

http://clic.cern/european-strategy

CLIC Snowmass Inputs (2022)

Several Lols have been submitted on behalf of CLIC and CLICdp

The CLIC accelerator study: <u>Link</u> Beam-dynamics focused on very high energies: <u>Link</u> The physics potential: <u>Link</u> Detector: <u>Link</u>

Sustainability: towards a Life Cycle Assessment (LCA) for LCs

ARUP

What is the carbon intensity of energy in ~ 2050 (operation):

- 50% nuclear and 50% renewable give ~10-15g/kWh
- France summer-months are today ~40g/kWh
- ILC has a green implementation concept including compensation and contracting renewable energy
- Reductions predicted (LINK)

CO₂ intensity of electricity generation varies widely today, but all regions see a decline in future years and many have declared net zero emissions ambilions by around 2050

Around 11-12 kton/km main linac (CLIC DB and ILC)

Steinar Stapnes

- 104 x 2m-long C-band structures
 (beam → 6 GeV @ 100 Hz)
- Similar um-level tolerances
- Length ~ 800 CLIC structures

Domain

Cost [MCHF]

Drive-Beam Klystron

5890

7290

Accelerator re-costed bottom-up

- Methods and costings validated at review November 2018 – similar to LHC, ILC, CLIC CDR
- Technical uncertainty and commercial uncertainty estimated

- Main Beam Production
 Drive Beam Production
- Main Linac Modules
- Main Linac RF
- Beam Delivery, Post Collision Lines
- Civil Engineering
- Infrastructure and Services
 Machine Control, Protection
 and Safety systems

	Injectors	175	175
Main Beam Production	Damping Rings	309	309
	Beam Transport	409	409
	Injectors	584	
Drive Beam Production	Frequency Multiplication	379	
	Beam Transport	76	
Main Lines Modules	Main Linac Modules	1329	895
Main Linac Modules	Post decelerators	37	
Main Linac RF	Main Linac Xband RF	_	2788
Beam Delivery and	Beam Delivery Systems	52	52
	Final focus, Exp. Area	22	22
Fost Comsion Lines	Post-collision lines/dumps	47	47
Civil Engineering	Civil Engineering	1300	1479
	Electrical distribution	243	243
Infrastructure and Services	Survey and Alignment	194	147
initiastructure and services	Cooling and ventilation	443	410
	Transport / installation	38	36
Machine Control, Protection and Safety systems	Safety system	72	114
	Machine Control Infrastructure	146	131
	Machine Protection	14	8
	Access Safety & Control System	23	23

Sub-Domain

Total (rounded)

Other cost estimates:

Construction:

- Labour estimate: ~11500 FTE for 380 GeV
- From 380 GeV to 1.5 TeV, add 5.1 BCHF (drive-beam RF upgrade and lengthening of linacs)
- From 1.5 TeV to 3 TeV, add 7.3 BCHF (second drive-beam complex and lengthening of linacs)

Operation:

- 116 MChF consumables + spares (see below)
- Energy costs

- 1% for accelerator hardware parts (e.g. modules).
- 3% for the RF systems, taking the limited lifetime of these parts into account.
- 5% for cooling, ventilation and electrical infra structures etc. (includes contract labour and consumables)

These replacement/operation costs represent $116\,{\rm MCHF}$ per year.

Power + energy: 380 GeV

Power = 110 MW

Annual energy consumption = 0.6 TWh (~ 50% of current CERN energy use)

Further savings possible: high-efficiency klystrons, permanent magnets ... Looking also more closely at 1.5 and 3 TeV numbers

Extra material:

C3

Technical Timeline for 250/550 GeV CoM

Energy upgrade in parallel to operation with installation of additional RF power sources

	2019-2	024	2025-2034			2035-2044		2045-2054			2055-2064							
Accelerator																		
Demo proposal																		
Demo test																		
CDR preparation																		
TDR preparation																		
Industrialization																		
TDR review																		
Construction																		
Commissioning																		
$2 \text{ ab}^{-1} @ 250 \text{ GeV}$																		
RF Upgrade																		
$4 \text{ ab}^{-1} @ 550 \text{ GeV}$																		
Multi-TeV Upg.																		
HL-LHC																		

Caterina Vernieri

Cool Copper Collider (C3)

• Design aim: 550 GeV c.o.m. energy w. 120 MV/m structures

start @ 250 GeV w. 70 MV/m structures

- Beam parameters optimised for same integrated luminosity as ILC: 2 ab-1 in 10 years @ 250 GeV
- Benefits from synergies with ILC and CLIC:

Beam Delivery System and Interaction Region based on ILC

Damping Rings and injectors use CLIC as a baseline

Cool Copper Collider (C3)

UNIVERSITY OF

DXFORD

Design choice: C-band Cu RF cavities @ 77K (LN2) higher gradients $\leftarrow \rightarrow$ lower RF power

higher RF \rightarrow beam efficiency

Electric field magnitude for equal power from RF manifold

John Adams Institute for Accelerator Science

Power Consumption and Sustainability

Snowmass

Compatibility with Renewables Cryogenic Fluid Energy Storage

Temperature (K)	77
Beam Loading (%)	45
Gradient (MeV/m)	70
Flat Top Pulse Length (µs)	0.7
Cryogenic Load (MW)	9
Main Linac Electrical Load (MW)	100
Site Power (MW)	~150

Intermittent and variable power production from renewables mediated with commercial scale energy storage and power production

250 GeV CoM - Luminosity - 1.3x1034

Parameter	Units	Value
Reliquification Plant Cost	M\$/MW	18
Single Beam Power (125 GeV linac)	MW	2
Total Beam Power	MW	4
Total RF Power	MW	18
Heat Load at Cryogenic	MW	9
Temperature		
Electrical Power for RF	MW	40
Electrical Power For	MW	60
Cryo-Cooler		
Accelerator Complex	MW	~50
Power		
Site Power	MW	~150

Caterina Vernieri

34

New "sustainable" parameter set ?

scenario	$C^{3} - 250$	$C^{3} - 550$	C^3 -250 s.u.	C^3 -550 s.u.
Luminosity [x10 ³⁴]	1.3	2.4	1.3	2.4
Gradient $[MeV/m]$	70	120	70	120
Effective Gradient [MeV/m]	63	108	63	108
Length [km]	8	8	8	8
Num. Bunches per Train	133	75	266	150
Train Rep. Rate [Hz]	120	120	60	60
Bunch Spacing [ns]	5.26	3.5	2.65	1.65
Bunch Charge [nC]	1	1	1	1
Crossing Angle [rad]	0.014	0.014	0.014	0.014
Single Beam Power [MW]	2	2.45	2	2.45
Site Power [MW]	$\sim \! 150$	~ 175	~ 110	$\sim \! 125$

Caterina Vernieri

Rapid Construction with a Surface Site

- "Cut and cover" construction
- Precast concrete housing elements made on site
- Limited waster material reuse material to cover tunnel
- Requires low density site e.g. Hanford

First level precast elements installation

Caterina Vernieri

83

33

Collider	NLC[28]	CLIC[29]	ILC[5]	C^3	C^3
CM Energy [GeV]	500	380	250(500)	250	550
$\sigma_z \; [\mu \mathrm{m}]$	150	70	300	100	100
β_x [mm]	10	8.0	8.0	12	12
β_y [mm]	0.2	0.1	0.41	0.12	0.12
$\epsilon_x \text{ [nm-rad]}$	4000	900	500	900	900
$\epsilon_y \text{ [nm-rad]}$	110	20	35	20	20
Num. Bunches per Train	90	352	1312	133	75
Train Rep. Rate [Hz]	180	50	5	120	120
Bunch Spacing [ns]	1.4	0.5	369	5.26	3.5
Bunch Charge [nC]	1.36	0.83	3.2	1	1
Beam Power [MW]	5.5	2.8	2.63	2	2.45
Crossing Angle [rad]	0.020	0.0165	0.014	0.014	0.014
Crab Angle	0.020/2	0.0165/2	0.014/2	0.014/2	0.014/2
Luminosity $[x10^{34}]$	0.6	1.5	1.35	1.3	2.4
	(w/ IP dil.)	$(\max is 4)$			
Gradient [MeV/m]	37	72	31.5	70	120
Effective Gradient [MeV/m]	29	57	21	63	108
Shunt Impedance $[M\Omega/m]$	98	95		300	300
Effective Shunt Impedance $[M\Omega/m]$	50	39		300	300
Site Power [MW]	121	168	125	~ 150	~ 175
Length [km]	23.8	11.4	20.5(31)	8	8
L* [m]	2	6	4.1	4.3	4.3

Collider	NLC[28]	CLIC[29]	ILC[5]	C^3	C^3
CM Energy [GeV]	500	380	250(500)	250	550
$\sigma_z \; [\mu \mathrm{m}]$	150	70	300	100	100
β_x [mm]	10	8.0	8.0	12	12
β_y [mm]	0.2	0.1	0.41	0.12	0.12
$\epsilon_x \text{ [nm-rad]}$	4000	900	500	900	900
$\epsilon_y \text{ [nm-rad]}$	110	20	35	20	20
Num. Bunches per Train	90	259	1312	122	75
Train Rep. Rate [Hz]	180	50	5	120	120
Bunch Spacing [ns]	1.4	0.5	369	5.26	3.5
Bunch Charge [nC]	1.36	0.83	3.2	1	1
Beam Power [MW]	5.5	2.8	2.63	2	2.45
Crossing Angle [rad]	0.020	0.0165	0.014	0.014	0.014
Crab Angle	0.020/2	0.0165/2	0.014/2	0.014/2	0.014/2
Luminosity $[x10^{34}]$	0.6	1.5	1.35	1.3	2.4
	(w/ IP dil.)	$(\max is 4)$			
Gradient [MeV/m]	37	72	31.5	70	120
Effective Gradient [MeV/m]	29	57	21	63	108
Shunt Impedance $[M\Omega/m]$	98	95		300	300
Effective Shunt Impedance $[M\Omega/m]$	50	39		300	300
Site Power [MW]	121	168	125	~ 150	~ 175
Length [km]	23.8	11.4	20.5(31)	8	8
L* [m]	2	6	4.1	4.3	4.3

Collider	NLC[28]	CLIC[29]	ILC[5]	C^3	C^3
CM Energy [GeV]	500	380	250(500)	250	550
$\sigma_z \; [\mu \mathrm{m}]$	150	70	300	100	100
β_x [mm]	10	8.0	8.0	12	12
β_y [mm]	0.2	0.1	0.41	0.12	0.12
$\epsilon_x \text{ [nm-rad]}$	4000	900	500	900	900
$\epsilon_y \text{ [nm-rad]}$	110	20	35	20	20
Num. Bunches per Train	90	352	1312	133	75
Train Rep. Rate [Hz]	180	50	5	120	120
Bunch Spacing [ns]	1.4	0.5	369	5.26	3.5
Bunch Charge [nC]	1.36	0.83	3.2	1	1
Beam Power [MW]	5.5	2.8	2.63	2	2.45
Crossing Angle [rad]	0.020	0.0165	0.014	0.014	0.014
Crab Angle	0.020/2	0.0165/2	0.014/2	0.014/2	0.014/2
Luminosity $[x10^{34}]$	0.6	1.5	1.35	1.3	2.4
	(w/ IP dil.)	$(\max is 4)$			
Gradient [MeV/m]	37	72	31.5	70	120
Effective Gradient [MeV/m]	29	57	21	63	108
Shunt Impedance $[M\Omega/m]$	98	95		300	300
Effective Shunt Impedance $[M\Omega/m]$	50	39		300	300
Site Power [MW]	121	168	125	~ 150	~ 175
Length [km]	23.8	11.4	20.5(31)	8	8
L* [m]	2	6	4.1	4.3	4.3

Collider	NLC[28]	CLIC[29]	ILC[5]	C^3	C^3
CM Energy [GeV]	500	380	250(500)	250	550
$\sigma_z \; [\mu \mathrm{m}]$	150	70	300	100	100
β_x [mm]	10	8.0	8.0	12	12
β_y [mm]	0.2	0.1	0.41	0.12	0.12
ϵ_x [nm-rad]	4000	900	500	900	900
$\epsilon_y \text{ [nm-rad]}$	110	20	35	20	20
Num. Bunches per Train	90	352	1312	133	75
Train Rep. Rate [Hz]	180	50	5	120	120
Bunch Spacing [ns]	1.4	0.5	369	5.26	3.5
Bunch Charge [nC]	1.36	0.83	3.2	1	1
Beam Power [MW]	5.5	2.8	2.63	2	2.45
Crossing Angle [rad]	0.020	0.0165	0.014	0.014	0.014
Crab Angle	0.020/2	0.0165/2	0.014/2	0.014/2	0.014/2
Luminosity $[x10^{34}]$	0.6	1.5	1.35	1.3	2.4
	(w/ IP dil.)	$(\max is 4)$			
Gradient [MeV/m]	37	72	31.5	70	120
Effective Gradient [MeV/m]	29	57	21	63	108
Shunt Impedance $[M\Omega/m]$	98	95		300	300
Effective Shunt Impedance $[M\Omega/m]$	50	39		300	300
Site Power [MW]	121	168	125	~ 150	~ 175
Length [km]	23.8	11.4	20.5(31)	8	8
L* [m]	2	6	4.1	4.3	4.3

Collider	NLC[28]	CLIC[29]	ILC[5]	C^3	C^3
CM Energy [GeV]	500	380	250(500)	250	550
$\sigma_z \; [\mu \mathrm{m}]$	150	70	300	100	100
β_x [mm]	10	8.0	8.0	12	12
β_y [mm]	0.2	0.1	0.41	0.12	0.12
ϵ_x [nm-rad]	4000	900	500	900	900
$\epsilon_y \text{ [nm-rad]}$	110	20	35	20	20
Num. Bunches per Train	90	352	1312	133	75
Train Rep. Rate [Hz]	180	50	5	120	120
Bunch Spacing [ns]	1.4	0.5	369	5.26	3.5
Bunch Charge [nC]	1.36	0.83	3.2	1	1
Beam Power [MW]	5.5	2.8	2.63	2	2.45
Crossing Angle [rad]	0.020	0.0165	0.014	0.014	0.014
Crab Angle	0.020/2	0.0165/2	0.014/2	0.014/2	0.014/2
Luminosity $[x10^{34}]$	0.6	1.5	1.35	1.3	2.4
	(w/ IP dil.)	$(\max is 4)$			
Gradient [MeV/m]	37	72	31.5	70	120
Effective Gradient [MeV/m]	29	57	21	63	108
Shunt Impedance $[M\Omega/m]$	98	95		300	300
Effective Shunt Impedance $[M\Omega/m]$	50	39		300	300
Site Power [MW]	121	168	125	~ 150	~ 175
Length [km]	23.8	11.4	20.5(31)	8	8
L* [m]	2	0	4.1	4.3	4.3

C Technical progress and challenges

Over the last year, significant progress to tackle several challenges:

- Gradient Scaling up to meter scale cryogenic tests (Emilio, Dennis)
- Vibrations Measurements with full thermal load (Ankur)
- Alignment Working towards raft prototype (Harry) •
- **Cryogenics** Two-phase flow simulations to full flow tests
- Damping Materials, design and simulation (Wei-Hou, Shumail, Zhengai) •
- Beam Loading and Stability Beam test
- Scalability Cryomodules and integration (Andy)
- LLRF Control with RF System on Chip (Ankur)

Laying the foundation for a demonstration program to address technical risks

See Ankur's talk for details

Vibration Studies

9

Caterina Vernieri · LCWS · July 8, 2024

89

C Demonstration R&D Plan Timeline *

Caterina Vernieri

C3 demonstrator

Development of accelerators

