

Richard D'Arcy

John Adams Institute, University of Oxford

25th Sept 2024 | ECFA-UK Meeting | IPPP, University of Durham

Novel-Accelerator-Based Colliders

Particle colliders have been growing in size

Magnet technology and synchrotron radiation cause unfavourable scaling to higher energies

ISR (1971): 75 m p+/p+, 62 GeV CM

SppS (1981): 1.1 km radius p+/p- , 900 GeV CM

> **LEP (1989): 4.3 km e+/e- , 209 GeV CM**

> **LHC (2008): 4.3 km p+/p+, 13.6 TeV CM**

> > **FCC (?): 14.4 km e+/e- , > 365 GeV CM p+/p+, up to 100 TeV CM**

HERA (1992): 1.0 km p+/(e- or e+), 320 GeV CM

Tevatron (1992): 0.95 km p+/p- , 2 TeV CM

The next step for electron/positron colliders could be linear

> Size limited by achievable gradients in radio-frequency (RF)

> *Main RF-options*: ILC, CLIC, C3

ILC / 500 GeV / 31 km \Rightarrow Still a significant investment $\mathcal{O}(10^{10} \epsilon)$ and scale $\mathcal{O}(10s \text{ km})$

The plasma-accelerator (>1 GV/m) mission for particle physics

ILC / 500 GeV / 31 km

-
-
- > Provide an upgrade path for other Higgs-Factory LCs (repurposing of ILC/CLIC/C3 infrastructure)

The plasma-accelerator (>1 GV/m) mission for particle physics

-
-
- > Provide an upgrade path for other Higgs-Factory LCs (repurposing of ILC/CLIC/C3 infrastructure)

*for the linac, not including the BDS

- *>Towards high energy:*
	- > Large energy gain in a single plasma module
	- > Staging of two plasma modules

Proof-of-principle progress towards collider readiness

From: Steinke et al., Nature 530, 190 (2016)

From: Blumenfeld et al., Nature 445, 741 (2007)

Page 6

Systematically ticking off the R&D requirements for a collider

- *>Towards high energy:*
	- > Large energy gain in a single plasma module
	- > Staging of two plasma modules

>Towards high beam quality (luminosity):

- > Transverse and longitudinal stability
- Emittance and energy-spread preservation
- > Spin-polarisation preservation

From: Maier et al., Phys. Rev. X 10, 031039 (2020)

From: Lindstrøm et al., Nat. Commun. 15, 6097 (2024)

Page 7

Proof-of-principle progress towards collider readiness

Systematically ticking off the R&D requirements for a collider

- *>Towards high energy:*
	- Large energy gain in a single plasma module
	- > Staging of two plasma modules

>Towards high beam quality (luminosity):

- > Transverse and longitudinal stability
- Emittance and energy-spread preservation
- > Spin-polarisation preservation

>Towards high beam power (luminosity):

- > High-overall efficiency (wall-plug to beam)
- Repetition rate
- > Plasma-cell cooling

Proof-of-principle progress towards collider readiness

From: D'Arcy et al., Nature 603, 58 (2022)

Systematically ticking off the R&D requirements for a collider

Significant experimental progress motivates consideration for HEP

Straw-person designs have been a useful exercise to guide R&D over the last decades

The positron challenge is created by charge asymmetry (high mobility of light plasma electrons vs. heavier ions) aloa by only

> Positron acceleration has been demonstrated

- \overline{C} DDOSCO > Several schemes proposed to improve beam quality
	- but lack of e^+ test facilities
- > Positron acceleration in plasma lags behind electron acceleration

One key stumbling block in each concept: *positron acceleration*

–15

electrons are lighter) motion for e^- but plasma (equivalent to ion motion for e[−] but plasma > **Main challenge**: *Electron motion*

 $\overline{1}$

15 b > Currently, *luminosity per power* still ~1000x below RF and *e*−

Source: Corde et al. Nature 524, 442 (2015).

One key stumbling block in each concept: *positron acceleration*

The positron challenge is created by charge asymmetry (high mobility of light plasma electrons vs. heavier ions)

Adopted from S. Harris and C. Lindstrøm

> Positron acceleration has been demonstrated

(equivalent to ion motion for e^- but plasma electrons are lighter)

- > Several schemes proposed to improve beam quality
	- $-$ but lack of e^+ test facilities
- > Positron acceleration in plasma lags behind electron acceleration

> **Main challenge**: *Electron motion*

> Currently, *luminosity per power* still ~1000x below RF and *e*−

R. D'Arcy | ECFA-UK Meeting | Sept 2024 | IPPP, Durham Page 12

The pragmatic approach:

use **plasma** to **accelerate electrons** *but RF to accelerate positrons*

Question: Can asymmetries reduce facility cost / increase feasibility?

In fact… the more asymmetries, the better!

Question: Can asymmetries reduce facility cost / increase feasibility?

In fact… the more asymmetries, the better!

3

HALHF: A Hybrid, Asymmetric, Linear Higgs Factory

Utilising plasma technology for a compact and cost-effective Higgs factory

Source: [Foster, D'Arcy and Lindstrøm, New J. Phys. 25, 093037 \(2023\)](https://doi.org/10.1088/1367-2630/acf395)

HALHF: A Hybrid, Asymmetric, Linear Higgs Factory

Utilising plasma technology for a compact and cost-effective Higgs factory

Source: [Foster, D'Arcy and Lindstrøm, New J. Phys. 25, 093037 \(2023\)](https://doi.org/10.1088/1367-2630/acf395)

- > **Beam-driven**: Use e^+ RF linac for accelerating e^- drivers (dual-purpose)
- **Overall footprint:** ~3.3 km
	- > Length dominated by e^- beam-delivery system
	- > Fits in most major particle-physics laboratories
- **Impact**: potentially 4x cheaper and greener than counterparts based solely on RF

HALHF: A Hybrid, Asymmetric, Linear Higgs Factory

Utilising plasma technology for a compact and cost-effective Higgs factory

Source: [Foster, D'Arcy and Lindstrøm, New J. Phys. 25, 093037 \(2023\)](https://doi.org/10.1088/1367-2630/acf395)

- > **Beam-driven**: Use e^+ RF linac for accelerating e^- drivers (dual-purpose)
- **Overall footprint:** ~3.3 km
	- > Length dominated by e^- beam-delivery system
	- > Fits in most major particle-physics laboratories
- **Impact**: potentially 4x cheaper and greener than counterparts based solely on RF

Rough cost estimates for HALHF

> Scaled from existing collider projects (ILC/CLIC) where possible → not exact

> Estimated **power usage is ~100 MW** (similar to ILC and CLIC): $>$ 21 MW beam power + 27 MW losses + 2×10 MW damping rings + 50% for cooling/etc. ower usage is ~ IOU MW (Similial to ILC and CLIC). The annual cells of plus shows plus shows plus sustema cell $\cos \theta$ is the position transfer length of the electron $\sin \theta$ is the electron $\cos \theta$ the electron $\cos \theta$ to the power $+$ \angle \prime ivivy lusses $+$ \angle \times d The Hallman is scaled by p_{redi}ning the cost assumed to scale with the cost assumed to scale with the cost as
In this length of the cost assumed to scale with the cost assumed to scale with the cost assumed to scale wit

10 >Dominated by conventional collider costs (97%) — **PWFA linac only ~3% of the cost**

> European accounting (2022 \$): **~\$1.9B** (**~1/4 of ILC TDR cost** @ 250 GeV)

> US accounting ("TPC"): **\$2.3–3.9B** (\$4.6B from ITF model for RF accelerators)

(d)

380 GeV, 550 GeV, and beyond?

> Higgs-physics motivations for higher energies:

 $>$ But HALHF does not scale to the energy frontier \rightarrow a multi-TeV collider will have to be symmetric again...

How does the length and cost scale with energy?

Bayesian optimisation framework developed to optimise the footprint for cost (build + run)

10 TeV pCM wakefield collider

P5 prioritises accelerator R&D toward a future 10 TeV pCM collider

Recommendation 4: Support a comprehensive effort to develop the resources—theoretical, computational and technological—essential to our 20-year vision for the field. This includes an aggressive R&D program that, while technologically challenging, could yield revolutionary accelerator designs that chart a realistic path to a 10 TeV pCM collider.

Investing in the future of the field to fulfill this vision requires the following:

a. mendation 6).

Support vigorous R&D toward a cost-effective 10 TeV pCM collider based on proton, muon, or possible wakefield technologies, including an evaluation of options for US siting of such a machine, with a goal of being ready to build major test facilities and demonstrator facilities within the next 10 years (sections 3.2, 5.1, 6.5 and Recom-

10 TeV pCM wakefield collider

P5 prioritises accelerator R&D toward a future 10 TeV pCM collider

Recommendation 4: Support a comprehensive effort to develop the resources—theoretical, computational and technological—essential to our 20-year vision for the field. This includes an aggressive R&D program that, while technologically challenging, could yield revolutionary accelerator designs that chart a realistic path to a 10 TeV pCM collider.

Investing in the future of the field to fulfill this vision requires the following:

a. mendation 6).

- > Same tools developed for HALHF can be used for a 10 TeV-scale γ–γ collider using two e– beams and similar PWFA linacs
	- *> Estimated length: ~27 km (BDS is~14 km)*
	- *> Luminosity and cost is difficult to estimate due to unknowns in gamma conversion (should not be scaled from HALHF)*

Support vigorous R&D toward a cost-effective 10 TeV pCM collider based on proton, muon, or possible wakefield technologies, including an evaluation of options for US siting of such a machine, with a goal of being ready to build major test facilities and demonstrator facilities within the next 10 years (sections 3.2, 5.1, 6.5 and Recom-

The pragmatic approach: use **plasma** to **accelerate electrons** *but RF to accelerate positrons*

R. D'Arcy | ECFA-UK Meeting | Sept 2024 | IPPP, Durham Page 22

protons

Energy-frontier (multi-TeV CM) electron-proton collider

Leveraging excellent progress in proton-driven plasma accelerators at AWAKE

From: A. Caldwell & M. Wing, Eur. Phys. J. C 76,

⁴⁶³ (2016) From: Adli et al. (AWAKE Collab.), Nature 561, ³⁶³ (2018)

- > Acceleration to 2 GeV is a great achievement
- > Experiment not optimised for electron injection
- > *Next goal*: acceleration to high energy with high quality

- > *First application*: fixed-target experiments for dark photon searches
- *Ultimate application: very high-energy (9 TeV CM) electron*proton collider
- > *Moon-shot application*: proton-driven plasma-based Higgs Factory (Farmer *et al.*, arXiv:2401.14765)

Outlook and plans

Decouple the challenge to leverage existing facilities whilst planning for new ones

- *> Experimental R&D in existing facilities:*
	- Single-stage operation with large energy gain and beam-quality preservation, with high overall efficiency
	- > High repetition rate (optimised bunch-train pattern)

> High average power (plasma heating, cell cooling)

Achromatic transport between stages

for new ones optimised efficiency on the experimental demonstration of which would be a higher w

Many innovations and developments still required high rep. rate from *O3*. Preliminary experimentation already performed at FLASH [27] will form the basis

Concept for cooled plasma cells. Image credit: R. D'Arcy

- *> Experimental R&D in existing facilities:*
	- Single-stage operation with large energy gain and beam-quality preservation, with high overall efficiency
	- High repetition rate (optimised bunch-train pattern)
	- **> High average power (plasma heating, cell cooling)**
	- Achromatic transport between stages
- *> Required new experimental facilities:*
	- **> Multi-stage demonstrator facility**
		- *> O(\$10-100M) depending on final energy*
		- *> Conceptual design in progress*
	- Spin polarisation

for new ones optimised efficiency on the experimental demonstration of which would be a higher w

Decouple the challenge to leverage existing facilities whilst planning for new ones

Electron source

Bunch compressor

Detectors

Kicker

Concept for multi-stage demonstrator facility with strong-field QED experiment. Image credit: C. A. Lindstrøm

0.2 GeV 0.6 GeV 1 GeV 1

Many innovations and developments still required high rep. rate from *O3*. Preliminary experimentation already performed at FLASH [27] will form the basis

Many innovations and developments still required

- *> Experimental R&D in existing facilities:*
	- Single-stage operation with large energy gain and beam-quality preservation, with high overall efficiency
	- High repetition rate (optimised bunch-train pattern)
	- **> High average power (plasma heating, cell cooling)**
	- Achromatic transport between stages
- *> Required new experimental facilities:*
	- **> Multi-stage demonstrator facility**
		- *> O(\$10-100M) depending on final energy*
		- *> Conceptual design in progress*
	- Spin polarisation

Decouple the challenge to leverage existing facilities whilst planning for new ones

Possible intermediate infrastructures for HEP use:

Strong-field QED experimentation

Plasma-based electron linac for LHeC

Fixed-target experiment for dark-matter search Test-beam facility for detector development

Electron source

Concept for multi-stage demonstrator facility with strong-field QED experiment. Image credit: C. A. Lindstrøm

A staged approach to plasma-based collider readiness

The LDG Plasma-Accelerator R&D Roadmap for the ESPP Update

Timeline (approximate/aspirational)

Timeline (approximate/aspirational)

Additional funding is required to achieve all proposed R&D The LDG Plasma-Accelerator R&D Roadmap for the ESPP Update

- A compelling list of goals and activities
- New activities are often leveraged by significant inhouse activities at major labs

- > Progress is being made with percent-level input from existing academics and researchers e.g. pre-CDR document and ESPP update document for HALHF
- > But we need to acquire an **extra ~3M€/yr for ~5 yrs** for all the necessary R&D for HALHF and AWAKE
- Funding required for people, hardware, HPC, etc.

> Opportunity:

> Key challenge:

ESPP Roadmap for Plasma Accelerators *—*

Working Packages and Required Resources

red acility acility HALHFrational test

Conclusions

- > Plasma accelerator technology is of high interest for the future of particle physics > Reduce the size of future colliders (reduced construction cost, environmental impact) > Upgrade path for Higgs-Factory linear colliders (repurposing of ILC/CLIC/C3 infrastructure) > The community is making progress to deliver self-consistent concepts > Higgs Factory → HALHF collaboration is pioneering system integration and optimisation (*ESPP*) > Energy Frontier → 10 TeV pCM wakefield collider end-to-end design effort launched in US (*P5*) > What is needed for these studies to be successful? > Continued international AAC community engagement > Close partnership with particle physics theorists & experimentalists (physics case, detectors) > Targeted funding (primarily personnel)
- > An opportunity for UK leadership
	- > World-leading expertise in novel-accelerator research
	- > State-of-the-art novel-accelerator facilities (e.g. EPAC, CLARA) at open-minded labs (e.g. RAL, Daresbury)