

Richard D'Arcy

John Adams Institute, University of Oxford

25th Sept 2024 | ECFA-UK Meeting | IPPP, University of Durham

Novel-Accelerator-Based Colliders

Particle colliders have been growing in size

Magnet technology and synchrotron radiation cause unfavourable scaling to higher energies

SppS (1981): 1.1 km radius p⁺/p⁻, 900 GeV CM

> HERA (1992): 1.0 km p⁺/(e⁻ or e⁺), 320 GeV CM

Tevatron (1992): 0.95 km p⁺/p⁻, 2 TeV CM

LEP (1989): 4.3 km e⁺/e⁻, 209 GeV CM

LHC (2008): 4.3 km p⁺/p⁺, 13.6 TeV CM

ISR (1971): 75 m p⁺/p⁺, 62 GeV CM

> FCC (?): 14.4 km e⁺/e⁻, > 365 GeV CM p+/p+, up to 100 TeV CM

The next step for electron/positron colliders could be linear

ILC / 500 GeV / 31 km

> Size limited by achievable gradients in radio-frequency (RF)

> Main RF-options: ILC, CLIC, C³

> Still a significant investment $\mathcal{O}(10^{10} \in)$ and scale $\mathcal{O}(10s \text{ km})$

The plasma-accelerator (>1 GV/m) mission for particle physics

- > Provide an upgrade path for other Higgs-Factory LCs (repurposing of ILC/CLIC/C3 infrastructure)

ILC / 500 GeV / 31 km

The plasma-accelerator (>1 GV/m) mission for particle physics

- > Provide an upgrade path for other Higgs-Factory LCs (repurposing of ILC/CLIC/C3 infrastructure)

*for the linac, not including the BDS

Proof-of-principle progress towards collider readiness

Systematically ticking off the R&D requirements for a collider

- > Towards high energy:
 - Large energy gain in a single plasma module >
 - > Staging of two plasma modules

From: Steinke et al., Nature 530, 190 (2016)

From: Blumenfeld et al., Nature 445, 741 (2007)

Proof-of-principle progress towards collider readiness

Systematically ticking off the R&D requirements for a collider

- > Towards high energy:
 - Large energy gain in a single plasma module
 - > Staging of two plasma modules

> Towards high beam quality (luminosity):

- > Transverse and longitudinal stability
- Emittance and energy-spread preservation
- > Spin-polarisation preservation

From: Vieira et al. PR-STAB 14, 071303 (2011)

From: Maier et al., Phys. Rev. X 10, 031039 (2020)

From: Lindstrøm et al., Nat. Commun. 15, 6097 (2024)

Proof-of-principle progress towards collider readiness

Systematically ticking off the R&D requirements for a collider

- > Towards high energy:
 - Large energy gain in a single plasma module
 - Staging of two plasma modules

> Towards high beam quality (luminosity):

- > Transverse and longitudinal stability
- Emittance and energy-spread preservation
- Spin-polarisation preservation

> Towards high beam power (luminosity):

- > High-overall efficiency (wall-plug to beam)
- Repetition rate
- > Plasma-cell cooling

From: D'Arcy et al., Nature 603, 58 (2022)

Significant experimental progress motivates consideration for HEP

2009

Today

Physics

Straw-person designs have been a useful exercise to guide R&D over the last decades

One key stumbling block in each concept: positron acceleration

The positron challenge is created by charge asymmetry (high mobility of light plasma electrons vs. heavier ions)

> Positron acceleration has been demonstrated

- > Several schemes proposed to improve beam quality
 - but lack of e^+ test facilities
- > Positron acceleration in plasma lags behind electron acceleration

> Currently, *luminosity per power* still ~1000x below RF and e

> Main challenge: Electron motion (equivalent to ion motion for e^- but plasma electrons are lighter)

Source: Corde et al. Nature 524, 442 (2015).

One key stumbling block in each concept: positron acceleration

The positron challenge is created by charge asymmetry (high mobility of light plasma electrons vs. heavier ions)

> Positron acceleration has been demonstrated

- > Several schemes proposed to improve beam quality
 - but lack of e^+ test facilities
- > Positron acceleration in plasma lags behind electron acceleration

> Currently, *luminosity per power* still ~1000x below RF and e^-

> Main challenge: Electron motion

(equivalent to ion motion for e^- but plasma electrons are lighter)

Adopted from S. Harris and C. Lindstrøm

R. D'Arcy | ECFA-UK Meeting | Sept 2024 | IPPP, Durham

The pragmatic approach:

use plasma to accelerate electrons but RF to accelerate positrons

Question: Can asymmetries reduce facility cost / increase feasibility?

In fact... the more asymmetries, the better!

Question: Can asymmetries reduce facility cost / increase feasibility?

In fact... the more asymmetries, the better!

	E (GeV)	$\sigma_z ~(\mu { m m})$	$N (10^{10})$	ϵ_{nx} (µm)	$\epsilon_{ny} (nm)$	$\beta_x \ (\mathrm{mm})$	$\beta_y \text{ (mm)}$	$\mathcal{L} (\mu b^{-1})$	$\mathcal{L}_{0.01} \ (\mu b^{-1})$	P
ILC:	125 / 125	300 / 300	2 / 2	10 / 10	35 / 35	13 / 13	0.41 / 0.41	1.12	0.92	
IALHF:	31.3 / 500	75 / 75	4 / 1	10 / 40	35 / 140	3.3 / 13	0.10 / 0.41	1.01	0.58]

HALHF: A Hybrid, Asymmetric, Linear Higgs Factory

Utilising plasma technology for a compact and cost-effective Higgs factory

Source: Foster, D'Arcy and Lindstrøm, New J. Phys. 25, 093037 (2023)

HALHF: A Hybrid, Asymmetric, Linear Higgs Factory

Utilising plasma technology for a compact and cost-effective Higgs factory

- **Overall footprint**: ~3.3 km
 - Length dominated by e^- beam-delivery system
 - > Fits in most major particle-physics laboratories
- *Impact*: potentially 4x cheaper and greener than counterparts based solely on RF

HALHF: A Hybrid, Asymmetric, Linear Higgs Factory

Utilising plasma technology for a compact and cost-effective Higgs factory

- > **Beam-driven**: Use e^+ RF linac for accelerating e^- drivers (dual-purpose)
- **Overall footprint**: ~3.3 km
 - Length dominated by e^- beam-delivery system
 - > Fits in most major particle-physics laboratories
- *Impact*: potentially 4x cheaper and greener than counterparts based solely on RF

Rough cost estimates for HALHF

> Scaled from existing collider projects (ILC/CLIC) where possible \rightarrow not exact

> US accounting ("TPC"): **\$2.3–3.9B** (\$4.6B from ITF model for RF accelerators)

Subsystem	Original	Comment	Scaling	HALHF	Fraction
	$\cos t$		factor	$\cos t$	
	(MILCU)			(MILCU)	
Particle sources, damping rings	430	CLIC cost [76], halved for e^+ damping rings only ^a	0.5	215	14%
RF linac with klystrons	548	CLIC cost, as RF power is similar	1	548	35%
PWFA linac	477	ILC cost [46], scaled by length and multiplied by $6^{\rm b}$	0.1	48	3%
Transfer lines	477	ILC cost, scaled to the ~ 4.6 km required ^c	0.15	72	5%
Electron BDS	91	ILC cost, also at 500 GeV	1	91	6%
Positron BDS	91	ILC cost, scaled by length ^d	0.25	23	1%
Beam dumps	67	ILC cost (similar beam power) + drive-beam $dumps^{e}$	1	80	5%
Civil engineering	2,055	ILC cost, scaled to the ~ 10 km of tunnel required	0.21	476	31%
			Total	1,553	100%

> Estimated **power usage is ~100 MW** (similar to ILC and CLIC): >21 MW beam power + 27 MW losses + 2×10 MW damping rings + 50% for cooling/etc.

> European accounting (2022 \$): **~\$1.9B** (**~1/4 of ILC TDR cost** @ 250 GeV)

> Dominated by conventional collider costs (97%) — PWFA linac only ~3% of the cost

380 GeV, 550 GeV, and beyond?

How does the length and cost scale with energy?

Higgs-physics motivations for higher energies:

Energy c.o.m. (GeV)	Length (km)	EU / US / Full Programme Cost (norm. cost units)
250 (HZ)	4.9	1 / 1.5 / 2.2
380 (ttbar)	6.7	1.3 / 2.0 / 2.8
550 (HHH)	8.7	1.7 / 2.7 / 3.7
800	12.1	2.4 / 3.6 / 5.1

> But HALHF does not scale to the energy frontier \rightarrow a multi-TeV collider will have to be symmetric again...

Bayesian optimisation framework developed to optimise the footprint for cost (build + run)

10 TeV pCM wakefield collider

P5 prioritises accelerator R&D toward a future 10 TeV pCM collider

Recommendation 4: Support a comprehensive effort to develop the resources—theoretical, computational and technological—essential to our 20-year vision for the field. This includes an aggressive R&D program that, while technologically challenging, could yield revolutionary accelerator designs that chart a realistic path to a 10 TeV pCM collider.

Investing in the future of the field to fulfill this vision requires the following:

a. mendation 6).

Support vigorous R&D toward a cost-effective 10 TeV pCM collider based on proton, muon, or possible wakefield technologies, including an evaluation of options for US siting of such a machine, with a goal of being ready to build major test facilities and demonstrator facilities within the next 10 years (sections 3.2, 5.1, 6.5 and Recom-

10 TeV pCM wakefield collider

P5 prioritises accelerator R&D toward a future 10 TeV pCM collider

Recommendation 4: Support a comprehensive effort to develop the resources—theoretical, computational and technological—essential to our 20-year vision for the field. This includes an aggressive R&D program that, while technologically challenging, could yield revolutionary accelerator designs that chart a realistic path to a 10 TeV pCM collider.

Investing in the future of the field to fulfill this vision requires the following:

a. mendation 6).

- Same tools developed for HALHF can be used for a 10 TeV-scale $\gamma - \gamma$ collider using two e⁻ beams and similar PWFA linacs
 - Estimated length: ~27 km (BDS is~14 km)
 - Luminosity and cost is difficult to estimate due to unknowns in gamma conversion (should not be scaled from HALHF)

Support vigorous R&D toward a cost-effective 10 TeV pCM collider based on proton, muon, or possible wakefield technologies, including an evaluation of options for US siting of such a machine, with a goal of being ready to build major test facilities and demonstrator facilities within the next 10 years (sections 3.2, 5.1, 6.5 and Recom-

The pragmatic approach: use plasma to accelerate electrons but RF to accelerate positrons

R. D'Arcy | ECFA-UK Meeting | Sept 2024 | IPPP, Durham

protons

Energy-frontier (multi-TeV CM) electron-proton collider

Leveraging excellent progress in proton-driven plasma accelerators at AWAKE

From: Adli et al. (AWAKE Collab.), Nature 561, 363 (2018)

- > Acceleration to 2 GeV is a great achievement
- > Experiment not optimised for electron injection
- > **Next goal:** acceleration to high energy with high quality

From: A. Caldwell & M. Wing, Eur. Phys. J. C 76, 463 (2016)

- > *First application*: fixed-target experiments for dark photon searches
- **Ultimate application:** very high-energy (9 TeV CM) electronproton collider
- > *Moon-shot application*: proton-driven plasma-based Higgs Factory (Farmer *et al.*, arXiv:2401.14765)

Outlook and plans

Many innovations and developments still required

Decouple the challenge to leverage existing facilities whilst planning for new ones

- Experimental R&D in existing facilities:
 - Single-stage operation with large energy gain and beam-quality preservation, with high overall efficiency
 - High repetition rate (optimised bunch-train pattern) >

High average power (plasma heating, cell cooling) >

Achromatic transport between stages

Concept for cooled plasma cells. Image credit: R. D'Arcy

Many innovations and developments still required

Decouple the challenge to leverage existing facilities whilst planning for new ones

- Experimental R&D in existing facilities:
 - Single-stage operation with large energy gain and beam-quality preservation, with high overall efficiency
 - High repetition rate (optimised bunch-train pattern)
 - High average power (plasma heating, cell cooling)
 - Achromatic transport between stages
- Required new experimental facilities:
 - Multi-stage demonstrator facility >
 - O(\$10-100M) depending on final energy
 - Conceptual design in progress
 - Spin polarisation

compresso

0.2 GeV

Kicker

RF accelerator cavitie

bunch trai

RF accelerator cavitie

Concept for multi-stage demonstrator facility with strong-field QED experiment. Image credit: C. A. Lindstrøm

compresso

0.6 GeV

Bunch compressor

(train stabilization)

RF accelerator cavities

Many innovations and developments still required

Decouple the challenge to leverage existing facilities whilst planning for new ones

- Experimental R&D in existing facilities:
 - Single-stage operation with large energy gain and beam-quality preservation, with high overall efficiency
 - High repetition rate (optimised bunch-train pattern)
 - High average power (plasma heating, cell cooling)
 - Achromatic transport between stages
- Required new experimental facilities:
 - Multi-stage demonstrator facility >
 - O(\$10-100M) depending on final energy >
 - Conceptual design in progress
 - Spin polarisation

Possible intermediate infrastructures for HEP use:

Strong-field QED experimentation

Plasma-based electron linac for LHeC

Fixed-target experiment for dark-matter search

Test-beam facility for detector development

Concept for multi-stage demonstrator facility with strong-field QED experiment. Image credit: C. A. Lindstrøm

A staged approach to plasma-based collider readiness

The LDG Plasma-Accelerator R&D Roadmap for the ESPP Update

Timeline (approximate/aspirational)

10–20 years	20–30 years			
Fixed-target experiment (AWAKE) noton search, strong-field QED experiment, etc. (50–200 GeV e⁻)	(Facility upgrade)			
Demonstration of: of LHC beams, TeV acceleration, beam delivery	Energy-frontier collider 10 TeV c.o.m. electron-proton collider			

Timeline (approximate/aspirational)

	10–15 years	15–20 years	20+ years
on, Ə)	Multistage tech demonstrator Strong-field QED experiment (25–100 GeV e [–])	(Facility upgrade)	Feasibility stud R&D (exp. & th HEP facility (ea of construction
p. / &	Avg. power tech demonstrator X-ray FEL (20 GeV e-)	(Facility upgrade)	
onstration of: cy (e ⁻ drivers) & spin polarisation elerator & particle-physics concepts		Higgs factory (HALHF) Asymmetric, plasma–RF hybrid collider (250–380 GeV c.o.m.)	(Facility upgrade)
Demonstration of: tron acceleration in plasma, high wall-plug efficiency (laser drivers), ces, energy recovery schemes, compact beam-delivery systems			Multi-TeV e+_e-/γ_γ Symmetric, all-plasma collider (> 2 TeV c.0

Additional funding is required to achieve all proposed R&D The LDG Plasma-Accelerator R&D Roadmap for the ESPP Update

ESPP Roadmap for Plasma Accelerators —

Working Packages and Required Resources

WP No.	Workpackage	Postdocs	Other Resources requi
1.1	Overall collider concepts (Higgs Factory)	1	Buying time of coordinators Access to computing resources
1.2	Beam driven electron linac – integrated simulations	2	Buying time of coordinators Access to computing resources
1.3	Laser driven electron linac	3	Funding for joint meetings Access to computing resources
1.4	Positron acceleration	1	Experimental consumables Access to computing resources
1.5	Spin preservation	1	Experimental consumables Access to computing resources
1.6	Final focus system	1	TBD
1.7	Sustainability analysis	1	TBD
2.1	High-repetition rate laser-driven plasma module (coordination)	1	Funding for joint meetings
2.2	High rep-rate laser drivers	4	Resource for prototypes
2.3	High rep-rate targetry	2	Resources for testing concepts, Fa Access
2.4	LPA-experimental facility design (EPAC, CALA, ELI)	2	Resources for testing concepts, Fa Access
3.1	Electron-beam driven PWFA – experiment (FLASHForward/CLARA)	2	2 postdocs to realize/approximate relevant parameters in today's ope experiments
3.2	Proton-driven PWFA (at AWAKE)	2	Continued funding
4.1	Early High energy physics experiments	2	Access to computing resources

red icility icility HALHFrational tes

Opportunity:

- A compelling list of goals and activities
- New activities are often leveraged by significant inhouse activities at major labs

Key challenge:

- Progress is being made with percent-level input from existing academics and researchers e.g. pre-CDR document and ESPP update document for HALHF
- But we need to acquire an **extra ~3M€/yr for ~5** >**yrs** for all the necessary R&D for HALHF and AWAKE
- Funding required for people, hardware, HPC, etc.

Conclusions

- Plasma accelerator technology is of high interest for the future of particle physics Reduce the size of future colliders (reduced construction cost, environmental impact) > Upgrade path for Higgs-Factory linear colliders (repurposing of ILC/CLIC/C³ infrastructure) The community is making progress to deliver self-consistent concepts > Higgs Factory \rightarrow HALHF collaboration is pioneering system integration and optimisation (**ESPP**) Energy Frontier \rightarrow 10 TeV pCM wakefield collider end-to-end design effort launched in US (**P5**). What is needed for these studies to be successful? Continued international AAC community engagement Close partnership with particle physics theorists & experimentalists (physics case, detectors) Targeted funding (primarily personnel)
- An opportunity for UK leadership
 - World-leading expertise in novel-accelerator research
 - > State-of-the-art novel-accelerator facilities (e.g. EPAC, CLARA) at open-minded labs (e.g. RAL, Daresbury)