Physicists Just Discovered The Rarest Particle Decay Ever

By Admin — On Sep 24, 2024

Kaon and pion experiments

Evgueni Goudzovski

UNIVERSITY^{OF} BIRMINGHAM

<u>Outline</u>

- 1) Current kaon experiments: NA62 at CERN, KOTO at J-PARC
- 2) Next-generation kaon experiment: KOTO-II
- 3) Rare pion decays: PIONEER at PSI
- 4) Summary

ECFA-UK meeting on European Strategy IPPP Durham • 25 September 2024

TECHNOLOGY

Kaons: European and UK strategy

European Strategy 2020

- Other essential scientific activities for particle physics"
 - "... exploration of flavour and fundamental symmetries are crucial components of the search for new physics"
 - ✓ "These [experiments] include measurements of ... rare kaon decays at CERN and KEK"

PPAP Roadmap 2021

Recommendation 5.2: "The UK has a leading role in the scientific exploitation of the current generation of kaon experiments. The UK should ... invest into the *future CERN kaon experiments*"

Current kaon experiments

Kaon experiments at CERN

NA62 experiment at CERN

Run 1 dataset: 20 candidates observed; expected background: $7.03^{+1.05}_{-0.82}$

$$BR(K^+ \to \pi^+ \nu \bar{\nu}) = (10.6^{+4.0}_{-3.4}|_{\text{stat}} \pm 0.9_{\text{syst}}) \times 10^{-11}$$

NA62 Run 2 started in 2021: upgraded setup, ~30% higher beam intensity.
 Signal yield per SPS spill improved by 50% wrt Run 1.

✤ Full NA62 dataset (by LS3) projected to be about ×5 the Run 1 dataset. 5
E. Goudzovski / IPPP Durham, 25 September 2024

KOTO experiment at J-PARC

E. Goudzovski / IPPP Durham, 25 September 2024

KOTO: $K_L \rightarrow \pi^0 \nu \nu$ (2021 dataset)

KOTO plans:

[Preliminary; EPJ C84 (2024) 377]

- ♦ Number of K_L decays: $N_K = 6.8 \times 10^{12}$.
- Single-event sensitivity:
 BR_{SES}=8.7×10⁻¹⁰ (30×BR_{SM}).
- ✤ Background: 0.255±0.058 events (upstream π⁰, K_L→2π⁰, K⁺→π⁰e⁺ν, scattered K_L→2γ, hadron clusters).
- No candidates observed in the data.
- ✤ Preliminary result: $BR(K_L \rightarrow \pi^0 vv) < 2.0 \times 10^{-9} \text{ at } 90\% \text{ CL.}$

- ✤ Accumulate ×10 the 2021 dataset by 2027 (beam power up to 100 kW).
- Reduce B/S by a factor of 2 (improved beam; hardware upgrades).
- ✤ Reach a single-event sensitivity of (5-8)×10⁻¹¹.
- ✤ Reach the Grossman-Nir bound, BR(K_L) < 4.3×BR(K⁺).

Next-generation kaon experiment: KOTO-II

HIKE proposal at CERN

CERN-SPSC-2023-031, arXiv:2311.08231

Proposal for a staged high-intensity (5×NA62) kaon programme at the CERN SPS, with a strong UK leadership.

- ↔ Phase 1: a multi-purpose K⁺ experiment; $BR(K^+ \rightarrow \pi^+ \nu \nu)$ to 5% precision.
 - \checkmark Four years of data collection with K⁺ beam.
 - ✓ Four years in beam-dump mode, along with SHADOWS exp (5×10^{19} pot).
- ♦ Phase 2: a multi-purpose K_L experiment; BR(K_L→ $\pi^0\ell^+\ell^-$) to 15% precision.
 ✓ Five years of data collection with K_L beam.
- ↔ Phase 3: a dedicated $K_L \rightarrow \pi^0 v v$ experiment.

E. Goudzovski / IPPP Durham, 25 September 2024

J-PARC Hadron Hall extension

- Doubling experimental area for nuclear and particle physics.
- First-priority project for budget request.
- Anticipated project time scale: 2026-32 (in parallel with beam operation until 2029).
- ✤ Cost ≈ \$100M.

E. Goudzovski / IPPP Durham, 25 September 2024

Current hall 58 m 60 m KOTO KL beamline Extended hall KOTO II Dump 2 beamline T2 Extraction angle $5^{\circ} \rightarrow$ KOTO II behind the dump 43-m long KL2 beamline

KOTO-II proposal at J-PARC

- Four years of operation starting in 2034: 35 signal + 40 background events.
- ↔ Observation of the SM $K_L \rightarrow \pi^0 v v$ decay (>5 σ); $\Delta BR/BR=25\%$.
- ♦ UK leads the expansion of the physics programme to measure $K_L \rightarrow \pi^0 \ell^+ \ell^-$.
- Letter of Intent to be submitted to J-PARC in December 2024.

KOTO-II detector concept

Detector concept is based on the KOTO setup:

- ✤ Several UK groups are interested in joining KOTO-II.
- ♦ UK can take a major role: tracker for $K_1 \rightarrow \pi^0 \ell^+ \ell^-$ measurement, Beam Hole Charge Veto, DAQ, trigger, simulations, physics analysis. 13

E. Goudzovski / IPPP Durham, 25 September 2024

Next-generation pion experiment: PIONEER

PIONEER at PSI: motivation

arXiv:2203.01981

- Lepton flavour universality is tested at O(10⁻³) level.
- ♦ CKM first-row unitarity deficit: $|V_{ud}|^2 + |V_{us}|^2 1 = (-19.5 \pm 5.3) \times 10^{-4}$ [Bryman, Cirigliano, Crivellin, Inguglia, Ann. Rev. Nucl. Part. Sci. 72 (2022) 69; arXiv:2111.05338]
- ↔ PIONEER at PSI: a next-generation π^+ decay experiment based on the experience of PIENU@TRIUMF and PEN@PSI.
- ♦ Phase I: $BR(\pi^+ \rightarrow e^+\nu)/BR(\pi^+ \rightarrow \mu^+\nu) \sim 10^{-4}$ to a 10^{-4} relative precision (3 years).
- ↔ Phases II and III: $BR(\pi^+ \rightarrow \pi^0 e^+ v) \sim 10^{-8}$ to 0.04%; $|V_{ud}|$ to 0.02% (4+4 years).

PIONEER: detector and method

Detector design: Approved by PSI, aiming to start data-taking in 2030

- * Low-energy π^+ beam (65 MeV/c) stopped in an active target (ATAR), an LGAD silicon-strip detector; pion stopping rate = 300 kHz.
- ★ LXe/LYSO calorimeter (R_{out}~80cm; 25X₀): e⁺ energy tail <0.5% below 52 MeV.</p>
- Spherical tracker (design to be determined).

- ✤ UK (Glasgow) has been involved in PIENU at TRIUMF.
- Several UK groups are interested in contributing to software, simulations and MC productions (and eventually to physics).

Summary

- 10-8 World data ✤ Kaon decay experiments are $\pi^0 \nu \bar{\nu})$ KOTO exclusion (2021 data) collecting data and advancing KOTO direct exclusion @ 90% CL on rare decay measurements. Grossman-Nir bound 10⁻⁹ Gropsman-Nir bound $\mathcal{B}(K_L$ ✓ KOTO: improved $K_1 \rightarrow \pi^0 \nu \nu$ $\pm 2\sigma$ $\pm 1\sigma$ upper limit (September 2023) ✓ NA62: K⁺→ π^+ vv observation **10**⁻¹⁰ at the 5σ level (September 2024) SM \checkmark K⁺ $\rightarrow \pi^+ \nu \nu$ is the rarest particle decay established at the 5σ level 0.5 ${1.5 \hspace{0.1 cm} 2.0 \hspace{0.1 cm} 2.0 \hspace{0.1 cm} {\mathcal B}(K^+
 ightarrow \pi^+
 u ar
 u) imes 10^{10}$ 2.5 1.0 UK groups are interested in joining next-generation experiments.
 - ✓ KOTO-II at J-PARC: $K_1 \rightarrow \pi^0 v v$ observation at 5σ ; rare K_1 decays
 - ✓ PIONEER at PSI: BR(π_{ev})/BR($\pi_{\mu v}$) to 10⁻⁴ precision in Phase I

Kaon and pion decay experiments should be acknowledged as **essential scientific activities** in the upcoming European Strategy and PPRP Roadmap updates