

UNIVERSITYOF BIRMINGHAM

Light Dark Matter Searches with DarkSPHERE in Boulby

Patrick Knights

University of Birmingham, UK

p.r.knights@bham.ac.uk

P Knights - EFCA-UK Meeting, Durham

Landscape of Direct DM Searches

Plot from APPEC Report 2021

Landscape of Direct DM Searches

Plot from APPEC Report 2021

Landscape of Direct DM Searches

Plot from APPEC Report 2021

NEWS-G Light DM searches with a novel gaseous detector, the spherical proportional counter

Science and Technology **Facilities Council**

Boulby Underground Laboratory

13th NEWS-G Collaboration Meeting@Boulby Summer 2023

ARISTOTLE UNIVERSITY OF 90 THESSALONIKI

UNIVERSITY^{OF} BIRMINGHAM

Patrick Knights - DarkSPHERE - EFCA-UK, Durham

24/09/2024

3

Spherical Proportional Counter

Gaseous proportional counter
 Low capacitance, single-electron detection
 Smallest surface area to volume ratio
 Flexible choice of low-mass target nuclei
 H and C (in CH₄, i-C₄H₁₀), He, Ne, etc.
 Radiopure construction

Recent NEWS-G Results

g

S140 detector: Ø140 cm detector →99.99% pure Cu with 0.5mm electroplated radiopure Cu internal layer Built and tested in LSM First physics from commissioning data (pure CH4) First physics run in SNOLAB

Analysis underway (Ne:CH4)

SEDINE SNOGLOBE

Ø60cm Ø140cm NOSV Cu 99.99% Cu 500 μm EFCu Layer

Current detectors

UNIVERSITY^{of} BIRMINGHAM

Simulated backgrounds in SNOGLOBE

SEDINE SNOGLOBE

Ø60cm Ø140cm NOSV Cu 99.99% Cu 500 μ m EFCu Layer

Current detectors

UNIVERSITYOF BIRMINGHAM

Simulated backgrounds in SNOGLOBE

SEDINE SNOGLOBE

Ø60cm Ø140cm NOSV Cu 99.99% Cu 500 μ m EFCu Layer

Current detectors

UNIVERSITYOF BIRMINGHAM

SEDINE SNOGLOBE

Ø60cm Ø140cm NOSV Cu 99.99% Cu 500 μ m EFCu Layer

Current detectors

UNIVERSITYOF BIRMINGHAM

Ø30cm

Ungerground EF Cu

DarkSPHERE-30 SEDINE **SNOGLOBE**

Ø140cm

99.99% Cu

500 μ m EFCu Layer

DarkSPHERE

 $\emptyset 1.5 - 3$ cm Underground EF Cu

Current detectors

Future NEWS-G DM projects

Ø60cm

NOSV Cu

UNIVERSITYOF BIRMINGHAM

Electroforming...

Patrick Knights - DarkSPHERE - EFCA-UK, Durham

PHYSICAL REVIEW D 108, 112006 (2023)

Phys.Rev.D 108 (2023) 11, 112006

Exploring light dark matter with the DarkSPHERE spherical proportional counter electroformed underground at the Boulby Underground Laboratory

L. Balogh,¹ C. Beaufort,² M. Chapellier,³ E. C. Corcoran,⁴ J.-M. Coquillat,³ A. Dastgheibi-Fard,² Y. Deng,⁵ D. Durnford,⁵ C. Garrah,⁵ G. Gerbier,³ I. Giomataris,⁶ G. Giroux,³ P. Gorel,⁷ M. Gros,⁶ P. Gros,³ O. Guillaudin,² E. W. Hoppe,⁸ I. Katsioulas,⁹ F. Kelly,⁴ P. Knights[®],^{9,*} P. Lautridou,¹⁰ I. Manthos[®],⁹ R. D. Martin,³ J. Matthews,⁹ J.-F. Muraz,² T. Neep[®],⁹ K. Nikolopoulos[®],⁹ P. O'Brien,⁵ M.-C. Piro,⁵ N. Rowe,³ D. Santos,² G. Savvidis,³ I. Savvidis,¹¹ F. Vazquez de Sola Fernandez,¹⁰ R. Ward⁹

(NEWS-G Collaboration)

E. Banks,¹² L. Hamaide,¹³ C. McCabe^D,¹³ K. Mimasu,¹³ and S. Paling¹²

SEDINE SNOGLOBE

DarkSPHERE-30

DarkSPHERE

Ø60cm NOSV Cu Ø140cm 99.99% Cu 500 μm EFCu Layer

Ø30cm Ungerground EF Cu $\emptyset 1.5 - 3$ cm Underground EF Cu

Current detectors

Future NEWS-G DM projects

Patrick Knights - DarkSPHERE - EFCA-UK, Durham

PHYSICAL REVIEW D 108, 112006 (2023)

Phys.Rev.D 108 (2023) 11, 112006

Exploring light dark matter with the DarkSPHERE spherical proportional counter electroformed underground at the Boulby Underground Laboratory

L. Balogh,¹ C. Beaufort,² M. Chapellier,³ E. C. Corcoran,⁴ J.-M. Coquillat,³ A. Dastgheibi-Fard,² Y. Deng,⁵ D. Durnford,⁵ C. Garrah,⁵ G. Gerbier,³ I. Giomataris,⁶ G. Giroux,³ P. Gorel,⁷ M. Gros,⁶ P. Gros,³ O. Guillaudin,² E. W. Hoppe,⁸ I. Katsioulas,⁹ F. Kelly,⁴ P. Knights[®],^{9,*} P. Lautridou,¹⁰ I. Manthos[®],⁹ R. D. Martin,³ J. Matthews,⁹ J.-F. Muraz,² T. Neep[®],⁹ K. Nikolopoulos[®],⁹ P. O'Brien,⁵ M.-C. Piro,⁵ N. Rowe,³ D. Santos,² G. Savvidis,³ I. Savvidis,¹¹ F. Vazquez de Sola Fernandez,¹⁰ R. Ward⁹

(NEWS-G Collaboration)

E. Banks,¹² L. Hamaide,¹³ C. McCabe^(D),¹³ K. Mimasu,¹³ and S. Paling¹²

SEDINE SNOGLOBE DarkSPHERE-30

DarkSPHERE

Ø60cm NOSV Cu

Ø140cm 99.99% Cu 500 µm EFCu Layer

Ø30cm Ungerground EF Cu

 $\emptyset 1.5 - 3$ cm Underground EF Cu

Current detectors

Future NEWS-G DM projects

Electroforming...

Recent proposal from team from 9 UK institutes →UK-led direct DM search in UK, benefitting from international NEWS-G experience, completed R&D, and wider DM experience

DarkSPHERE in Boulby

DarkSPHERE will use a modular water-based shield A pure water shield is sufficient for background goal of 0.01 event/keV/kg/day in ROI

Boulby Underground Laboratory

Conceptual design fits in Large Experiment Cavern

% 'Neutrino-floor' reaching potential in DM-nucleon SI interactions **World-leading** potential in SD interactions through natural-abundance H and C isotopes @@30cm prototype in Boulby in a DarkSPHERE-like shield will have world-leading sensitivity

Patrick Knights - DarkSPHERE - EFCA-UK, Durham

% 'Neutrino-floor' reaching potential in DM-nucleon SI interactions **World-leading** potential in SD interactions through natural-abundance H and C isotopes @Ø30cm prototype in Boulby in a DarkSPHERE-like shield will have world-leading sensitivity

Patrick Knights - DarkSPHERE - EFCA-UK, Durham

% 'Neutrino-floor' reaching potential in DM-nucleon SI interactions **World-leading** potential in SD interactions through natural-abundance H and C isotopes @Ø30cm prototype in Boulby in a DarkSPHERE-like shield will have world-leading sensitivity

Patrick Knights - DarkSPHERE - EFCA-UK, Durham

Sensitivity to electron scattering through low threshold Large sphere is also ideal shape to study more exotic candidates
 Also ide

Patrick Knights - DarkSPHERE - EFCA-UK, Durham

DM mass m_{χ} [GeV/ c^2]

Enhanced sensitivity through MIGDAL effect in nuclear scattering Sensitivity to electron scattering through low threshold Large sphere is also ideal shape to study more exotic candidates

DM mass m_{χ} [GeV/ c^2]

Enhanced sensitivity through MIGDAL effect in nuclear scattering Sensitivity to electron scattering through low threshold Large sphere is also ideal shape to study more exotic candidates

Summary

Spherical proportional counters already employed for light-DM searches

Full detector electroformation will overcome main BG

DarkSPHERE proposed for Boulby's existing space World-leading physics potential in multiple interactions Scientific and technological complementarity with future DM experiments

DM mass m_{χ} [GeV/ c^2]

ECuME project: R&D completed for Ø140cm detector + scale model STFC funding for an ultra-pure EFCu facility underground in Boulby Currently under construction

FCu facility to be employed by other efforts (e.g. XLZD)

Example electroforming bath at Pacific Northwest National Laboratory

ECuME project: R&D completed for Ø140cm detector + scale model STFC funding for an ultra-pure EFCu facility underground in Boulby Currently under construction

FCu facility to be employed by other efforts (e.g. XLZD)

Example electroforming bath at Pacific Northwest National Laboratory

ECuME project: R&D completed for Ø140cm detector + scale model STFC funding for an ultra-pure EFCu facility underground in Boulby Currently under construction

FCu facility to be employed by other efforts (e.g. XLZD)

Example electroforming bath at Pacific Northwest National Laboratory

@ ECuME project: R&D completed for Ø140cm detector + scale model STFC funding for an ultra-pure EFCu facility underground in Boulby Currently under construction

FCu facility to be employed by other efforts (e.g. XLZD)

Construction of bath underway

Example electroforming bath at Pacific Northwest National Laboratory

Ultra-Pure Cu Electroforming

Favourable electrochemical properties of copper \rightarrow Possible to produce copper with reduced contaminants (e.g. U, Th, K, etc.) Used by several experiments, e.g. NEWS-G

Nucl.Instrum.Meth.A 988 (2021) 164844

Ultra-Pure Cu Electroforming

Favourable electrochemical properties of copper \rightarrow Possible to produce copper with reduced contaminants (e.g. U, Th, K, etc.) Used by several experiments, e.g. NEWS-G

Nucl.Instrum.Meth.A 988 (2021) 164844

Ultra-Pure Cu Electroforming

Main background source Cu detector Favourable electrochemical properties of copper \rightarrow Possible to produce copper with reduced contaminants (e.g. U, Th, K, etc.) Used by several experiments, e.g. NEWS-G

ICP-MS Assay

	Sample	Weight [g]	232 Th $\left[\mu Bq kg^{-1} ight]$	²³⁸ U [µBq l
O 138 d	C10100 Cu (Machined)	_	8.7 ± 1.6	27.9 ±
Vew	Cu Electroformed	-	< 0.119	< 0.09
b	Hemisphere 1	0.256	< 0.58	< 0.26
table m.Meth.A 988 (2021) 164844	Hemisphere 2	0.614	< 0.24	< 0.11

12

Ionisation Quenching Factor

WKinematic matching: low-mass targets are **favourable for light-DM** detection by nuclear recoils Light targets have favourable quenching factors

Patrick Knights - DarkSPHERE - EFCA-UK, Durham

WKinematic matching: low-mass targets are favourable for light-DM detection by nuclear recoils Light targets have favourable quenching factors

Patrick Knights - DarkSPHERE - EFCA-UK, Durham

WKinematic matching: low-mass targets are **favourable for light-DM** detection by nuclear recoils Light targets have favourable quenching factors

