UltraDark: ultralow temperature underground facility for dark matter and quantum systems

Elizabeth Leason EPSRC Quantum Technology Fellow University of Oxford ECFA Durham, 24.09.2024

INIVERSITY OF

QUEST-DMC

University of Sussex

QUEST

Prof. Andrew Casey Dr. Paolo Franchini Prof. Richard Haley Dr. Petri Heikkinen Dr Sergey Kafanov Dr Ashlea Kemp Dr. Elizabeth Leason Dr. Lev Levitin Prof. Jocelyn Monroe Dr Theo Noble Dr Jonathan Prance UNIVERSITY OF LIVERPOOL Dr Xavier Rojas Prof. John Saunders Dr. Quang Zhang

EXPERIMENTAL

Dr Samuli Autti

Robert Smith, Lizzie Blooomfield
Dr Michael Thompson
Dr Viktor Tsepelin
Dr Dmitry Zmeev
Dr Vladislav Zavyalov
Tineke Salmon, Luke Whitehead
THEORY
Dr Neda Darvishi
Prof. Mark Hindmarsh
Prof. Stephan Huber
Dr Asier Lopez-Eiguren
Prof. John March-Russell
Dr Juri Smirnov

Engineering and Physical Sciences Research Council

Science and Technology **Facilities Council**

National Physical Laboratory

SONS SUPERCONDUCTING QUANTUM MATERIALS & SYSTEMS CENTER

Quantum Enhanced Superfluid Technologies for Dark Matter and Cosmology

Motivation

Search strategies

4

Low threshold requirements

 Detector target – kinematic matching and signal generation process with low energy barrier

Low noise readout

Why superfluid? Going even lower

Threshold limit from quanta production:

- ~10eV Xe, Ar ionisation
- ~1eV semiconductor gap Ge, Si
- µeV meV excitations in low gap materials
- $< \mu eV superfluids$

Snowmass report 2022

Globally unique: superfluid helium 3

- Cooper pairing of He atoms superfluid <2mK
- Two superfluid phases: A and B
- Isotropic B-phase at ${\sim}100\mu K$
- Energy ∆~10⁻⁷eV required to break Cooper pairs and give single quasiparticles (QPs)

- Cooper pairing of He atoms superfluid <2mK
- Two superfluid phases: A and B
- Isotropic B-phase at ${\sim}100\mu K$
- Energy ∆~10⁻⁷eV required to break Cooper pairs and give single quasiparticles (QPs)

Unpaired nucleon: >Spin dependent dark matter – nucleon interaction

11

Quantum sensing

SQUID readout:

- 2-stage PTB SQUID amplifier
- [IEEE Trans. Appl. Supercond. 17 (2007)]
- potential to achieve sub eV energy threshold [E.P.J.C 84, 248 (2024)]
- other options in future hyQUIDs, quibits etc

QUEST DMC

- bolometer operation (coldest: 150 μK)
- nanowire fabrication (smallest: 180 nm)
- SQUID readout of nanowires
- calibration techniques

Sensitivity: <u>E.P.J.C 84, 248 (2024)</u>

Nanowire : arxiv:2311.02452

Backgrounds: <u>J Low Temp Phys 215,</u> <u>465–476 (2024)</u>

- material assay
- background simulation
- data acquisition and analysis tools

UltraDark: underground operation

World's first cryogen-free, dedicated low background nuclear demagnetisation cryostat [Phys. Rev. Applied 18, L041002 (2022)]

- Iow background material selection
- internal muon veto UK Canada quantum proposal
- shielding HDPE and lead NPL partnership

13

Quantum platform

- Backgrounds can limit preparation and manipulation of macroscopic quantum states – e.g. qubits [Eur. Phys. J. C 83, 94 (2023)]
- Operate superconducting quantum technology in an underground low background environment

- RISQ workshop (Fermilab 2024): indico.fnal.gov/event/63132/
- SQMS Quantum for Science (London 2024): indico.cern.ch/event/1379776/

Unique UK capability

Attract talent across disciplines

UltraDark: world's first low background, underground ULT facility

World 10⁻³² 10⁻³⁴ 10⁻³⁶ 10⁻³⁶ 10⁻⁴⁰ 10⁻⁴² 10⁻⁴⁴ 10⁻⁴⁵ 10⁻⁴

Quantum device development

Underground

opportunities

Backup

UltraDark Project Timeline

Work Package	Y1:01/04/2025		_	Y2:01/04/2026				Y3:01/04/2027			Y4:01/04/2028			Y5: 01/04/2029						
Task	<u>Q1</u>	Q2	Q3	Q4	<u>Q1</u>	<u>Q2</u>	Q3	Q4	<u>Q1</u>	Q2	Q3	Q4	<u>Q1</u>	<u>Q2</u>	<u>Q3</u>	Q4	<u>Q1</u>	Q2	Q3	Q4
Work Package 1: Site Survey, Material Selection, Design																				
WP1.1: Survey of the Boulby LEC site to establish cryostat																				
requirements																				
WP1.2: Selection of materials for the UltraDark cryostats																				
WP1.3: Design of the UltraDark cryostats																				
WP 1.4: Design of the measurement chain of the UltraDark																				
Cryostats																				
Work Package 2: Construction, Site preparation, Commissioning and Validation aboveground (RHUL)																				
WP2.1: Construction of the aboveground twin cryostat,																				
UltraDark -A, for validation on the surface																				
WP 2.2: Construction of the SuperQuest bolometer array																				
and associated readout																				
WP2.3: Commissioning of the UltraDark -A cryostat and																				
SuperQuest detector on the surface																				
WP 2.4: Final Specification and procurement of the																				
UltraDark - U Cryostat																				
Work Package 3 : Commissioning, Operations and Dark Matter Search																				
WP 3.1: Preparation of site infrastrucutre at Boulby for																				
UltraDark -U																				
WP 3.2: Installation and Commissioning of the																				
underground cryostat, UltraDark -U																				
WP3.3: Operations and Calibration of SuperQuest																				
underground																				
WP3.4 Dark Matter search analysis																				

SQUID READOUT scheme

Voltage excitation is applied via a transformer with mutual inductance Mx. SQUID current sensor detects current li flowing through the wire with impedance Z(f), contact resistance R, and SQUID input coil Li.

18

Energy measurement uncertainty

- Quasiparticle (QP) production fluctuations
- Readout noise conventional vs SQUID
- Shot noise fluctuations on incident QPs

Nuclear recoil energy thresholds: [400nm diameter wire at 0.12 T/Tc] • Conventional readout: 39 eV

• SQUID readout: 0.71 eV

Expected energy threshold

Resolution at threshold – 95% confidence energy > zero.

- Conventional readout: 39 eV
- SQUID readout reduces noise, so resolution is dominated by shot noise.
- Squid readout: 0.71 eV

21

Expected backgrounds

Background	Events/cell/day [0-10keV]							
Cosmic rays	3.31							
Radiogenic	2.61							
PP neutrino	4.76e-7							
CN neutrino	2.01e-9							

- Cosmic rays CRY + Geant4, no shielding and 90% veto efficiency
- Radiogenic material screening and Geant4

QUEST-DMC assays

			Measured activity [mBq/kg]										
Sample	Mass [g]	Detector	$^{238}\mathrm{U_{early}}$	$^{238}\mathrm{U}_\mathrm{late}$	²¹⁰ Pb	$^{232}\mathrm{Th}_{\mathrm{early}}$	$^{232}\mathrm{Th}_{\mathrm{late}}$	40 K					
Stainless steel	544.2	Roseberry	16(8)	2.5(0.9)	82(27)	3.1(1.2)	3.9(0.9)	< 6.2					
Al 6061-O	642.6	Lunehead	8330(270)	15.3(3.9)	-	356(12)	334.4(8.2)	56(8)					
Painted Al	923.0	Chaloner	25680(230)	16.2(3.2)	60480(540)	259.2(8.3)	342.2(6.2)	21.8(9.6)					
Brass	107.0	Roseberry	< 7.6	4(1)	14990(350)	< 1	< 1.1	< 7.3					
Silver sinters	37.1	Roseberry	< 90	< 36	430(320)	< 27	< 28	< 385					
Vespel	38.3	Chaloner	87 ± 66	90(14)	418 ± 85	111(25)	64(14)	430(240)					
Fiberglass	6.02	Chaloner	32580(640)	15154(62)	68600(1400)	11400(100)	12005(62)	23520(440)					
Araldite	161.9	Roseberry	< 3.6	< 4.8	14.5(9.7)	< 3.4	< 2.2	< 25.5					
Stycast	131.5	Chaloner	< 10.5	< 9.5	< 14.9	< 12.9	< 6.2	< 122.2					
GRP	106.9	Lunehead	5700(1000)	7460(120)	-	7840(160)	7350(100)	4900(570)					
PEN	35.1	Roseberry	< 4.2	6.4(2.7)	26(13)	< 3.4	< 2.4	< 22.8					
Annealed Cu	19.1	Belmont	< 258	23.4(7.4)	-	< 12.2	< 5.7	< 138					
Polyester Yarn	16.7	Roseberry	< 448	175(16)	-	< 30.4	< 10.4	746(206)					
Macor	42.4	Roseberry	-	955(30)	-	386(60)	504(24)	2333000(4000)					
kel-F	97.6	Roseberry	< 6.9	13.6(2.0)	13.7(12.9)	< 4.6	< 7.3	< 44.7					
Si Pieces	6.9	Belmont	< 39.2	< 110	39.9(40.1)	< 69.1	< 57.1	< 319					

Material selection and normalisation of background model.