

Liquid xenon rare-event observatory

ADAM BROWN

Liquid xenon for dark matter

Liquid xenon leads sensitivity to GeV+ mass WIMPs

Observe light (S1) & charge (S2) from interactions

 \rightarrow 5D information (x,y,y,E,t) + particle discrimination (ER / NR)

XLZD | Adam Brown | ECFA-UK meeting in Durham

Liquid xenon for dark matter

Liquid xenon leads sensitivity to GeV+ mass WIMPs

Observe light (S1) & charge (S2) from interactions

 \rightarrow 5D information (x,y,y,E,t) + particle discrimination (ER / NR)

XLZD | Adam Brown | ECFA-UK meeting in Durham

Who is XLZD?

Pursuing future LXe experiment MoU signed in 2021

350+ members from 60+ institutions

About to be constituted as formal collaboration

Already active with regular in-person meetings and active science and R&D studies

11/09/2024

XENON and LZ: running experiments

Two cutting edge liquid xenon experiments With 6 t (XENONnT) and 7 t (LZ) xenon in TPC

World-leading constraints on **WIMP dark matter**

Increasingly sensitive to other rare events

rement of Solar ⁸B Neutrinos via Coherent Elastic Neutrino-Nucleus Scattering with XENONnT

Bierse S, K. Abee, * S. Ahmed Macoloude, * L. Althueser, * B. Andrice, * E. Angeline, * C. and a strain, * F. Arnevel, * U. Bellagamba, * 12 R. Biometa, * 13 A. Brown, * 14 G. Bruno, * 11 R. Budnik, * 15 C. Cal, * G. Capelle, * 10 or 31 Å. P. Giometal Chives, * 19 Å. P. Colips, * 11 J. Chelagamba, * 12 R. Biochard, * 13 J. Cherner, 6 and * 14 P. Cherner, * 14 J. Cherner, 6 and * 14 J. Cherner, 14 J. Cherner, 6 and * 15 J. Chernel, * 11 J. Cherner, 6 and * 14 P. F. Giner, * 14 J. Cherner, 6 and * 14 J. Cherner, 7 and * 14 J. Cherner, 6 and * 15 J. Chernel, * 14 J. Cherner, 6 and * 14 F. Filter, * 14 R. Biokard, * 14 R. Galacita, * 14 G. Barno, * 14 R. Galacita, * 14 G. Barno, * 14 R. Galacita, * 14 G. Galacita, * 15 G. Galacita, * 14 G. Galacita, * 14 G. Matterse, * 14 G. Matter, * 15 G. Matter, * 14 G. Matter, * 15 G. Matter, * 15 G. Matter, * 15 G. Matter, * 15 G. Matter, *

R. Peresse^{1,0} C. Peters,³² J. Pienaet⁶, ⁴¹ M. Pierre^{6,14} G. Plante^{6,1} T. R. Pollmano,^{9,18} I. mrunepsugar,³⁰ O. [5, ⁶² J. Qia,⁶² J. M. Schwarz,⁴³ D. Schwarz,⁴⁵ J. S

XLZD | ADAM BROWN

DARWIN: R&D

Efforts to design a next-generation liquid xenon experiment

Active R&D in several areas: background mitigation, PMTs, test platforms, novel technologies...

R&D also underway outside DARWIN – e.g. the Xenon Futures R&D Project in the UK

Be most sensitive rare event xenon observatory

Search for WIMP dark matter down to neutrino fog

Search for $0\nu\beta\beta$ with natural Xe competing with dedicated experiments

Start science soon after end of current experiments

XLZD baseline design

Design book in preparation

Nominal plan: 60 t in 1:1 ratio (3 m x 3 m) Possibility of 80 t if Xe market permits

Early science with a shorter 40 t detector

3" photomultipliers (1182 per array)

240-290 V/cm drift field LXe skin detector —

Plus outer detector

as n, µ veto

3 m

Where might XLZD go?

Five locations under consideration

Boulby

North Yorkshire, UK

The Boulby Underground Laboratory, the UK's deep underground science facility, located 1100m (vertical access) below ground in an active salt mine extending below the North Sea

apan

The location of historic neutrino experiments in the converted Mozumi mine in the Okuhida mountains (1000m - horizontal access)

LNGS

iran Sasso, Italy

Located under the Gran Sasso mountain (1400m - horizontal access) this laboratory is the largest underground laboratory in the world devoted to neutrino and astroparticle physics

SNOLAB

Intario, Canada

Canada's deep underground research laboratory, located in Vale's Creighton active mine (2070m - vertical access)

SURF

South Dakota, US

The deepest underground laboratory in the United States, with about 12 miles for science activities on the 4850 Level (1490m - vertical access). Future location of the DUNE experiment

11/09/2024

Where might XLZD go?

Five locations under consideration

Boulby has a lot to offer, XLZD@Boulby project is underway

South Dakota, US

The deepest underground laboratory in the United States, with about 12 miles for science activities on the 4850 Level (1490m - vertical access) Future location of the DUNE

Boulby stage 1

Expansion of lab for future underground science use

Initial stage at 1100 m in salt

Clean manufacturing for XLZD

Past bottleneck (shaft)

Excavations underway

Could host mid-scale experiments

Boulby stage 2

Stage 2: experimental lab at 1300 m

Ready around 2030

Purpose-designed for XLZD

32m L x 22m W x 26m H main hall with space for water tank

Clean lab space (ISO 7) with even cleaner assembly area (ISO 6)

WIMP sensitivity

Definitive search for medium to high WIMP masses

Reach into the neutrino fog after ~ 1000 tonnes years exposure

 $3-\sigma$ discovery potential at SI cross section of 3×10^{-49} cm² at 40 GeV

WIMP sensitivity

Definitive search for medium to high WIMP masses

Reach into the neutrino fog after ~ 1000 tonnes years exposure

 $3-\sigma$ discovery potential at SI cross section of 3×10^{-49} cm² at 40 GeV

WIMP sensitivity

XLZD | Adam Brown | ECFA-UK meeting in Durham

Lighter dark matter

11/09/2024

Two Xe isotopes carry spin, making up almost half the target

¹²⁹Xe (spin ½, 26%) and ¹³¹Xe (spin 3/2, 21%)

Sensitivity to spin-dependent WIMP interactions

Туре	Abbrev.	Operator	Dimension	Coherent	Coefficients
		(\mathcal{Q})		enhancement	
Magnetic Dipole	-	$\bar{\chi}\sigma^{\mu u}\chi F_{\mu u}$	5	Partial	C_F
Electric Dipole	-	$\bar{\chi}\sigma^{\mu u}\chi ilde{F}_{\mu u}$	5	Yes	\tilde{C}_F
Vector⊗Vector	VV	$\bar{\chi}\gamma^{\mu}\chi \bar{q}\gamma_{\mu}q$	6	Yes	$C_{u,d,s}^{VV}$
Axial-vector⊗Vector	AV	$ar{\chi}\gamma^{\mu}\gamma_{5}\chiar{q}\gamma_{\mu}q$	6	Yes	$C_{u,d}^{AV}$
Tensor⊗Tensor	TT	$\bar{\chi}\sigma^{\mu u}\chi\bar{q}\sigma_{\mu u}q$	6	Yes	$C_{u,d,s}^{TT}$
Pseudo-tensor⊗Tensor	\widetilde{TT}	$\left ar{\chi} \sigma^{\mu u} i \gamma_5 \chi ar{q} \sigma_{\mu u} q \right $	6	Yes	$ ilde{C}_{u,d,s}^{TT}$
$Scalar \otimes Scalar$	SS	$ar{\chi}\chi m_qar{q}q$	7	Yes	$C_{u,d,s}^{SS}$
Scalar-gluon	S_g	$\alpha_s \bar{\chi} \chi G^a_{\mu\nu} G^{\mu\nu}_a$	7	Yes	C_g^S
Pseudo-scalar - gluon	\tilde{S}_{g}	$\alpha_s \bar{\chi} i \gamma_5 \chi G^a_{\mu\nu} G^{\mu\nu}_a$	7	Yes	\tilde{C}_{g}^{S}
Pseudo-scalar⊗Scalar	PS	$\bar{\chi}i\gamma_5\chi m_q \bar{q}q$	7	Yes	$C_{u,d,s}^{PS}$
Spin-2	-	$ar{\chi}\gamma_{\mu}i\partial_{ u}\chiar{ heta}^{\mu u}_{q(g)}$	8	Yes	$C_{u,d,s,g}^{(2)}$
Axial-vector Axial-vector	AA	$\bar{\chi}\gamma^{\mu}\gamma_5\chi\bar{q}\gamma_{\mu}\gamma_5q$	6	No	C_{uds}^{AA}

Plus: Inelastic dark matter, Inelastic scattering, ALPs, dark photons, solar axions...

Neutrinoless double-beta decay

BSM process possible for Majorana neutrinos

e

 $\hat{\nu}$

¹³⁶Xe (8.9%) undergoes double beta decay (2vββ) half-life 2×10²¹ yr

Search for peak at Q=2458 MeV

Critical backgrounds are gamma decay of ²¹⁴Bi (2447 MeV) and flat background: ²²²Rn, ⁸B neutrinos and ¹³⁷Xe

Neutrinoless double-beta decay

Energy resolutions < 1% achieved by current detectors

Neutrinoless double-beta decay

XLZD competitive with dedicated experiments

XLZD | Adam Brown

твв

Other second order decays

Three other isotopes with (predicted) 2nd order weak decays

¹²⁴Xe (0.1%), ¹²⁶Xe (0.09%), ¹³⁴Xe (10%)

2vECEC Detected in XENON1T

Predicted but not observed

More interesting topologies $0\nu/2\nu EC\beta^+$, $0\nu/2\nu\beta^+\beta^+$

Tests of SM & nuclear physics

Astrophysical neutrinos

Neutrinos detected as NRs (CEvNS)

ERs (all other reactions)

Dutta B, Strigari LE. 2019. Annu. Rev. Nucl. Part. Sci. 69:137–61

⁸B neutrinos

AA ν Measured by XENONnT (2.73 σ), PandaX (2.64 σ) Significance will be far higher in XLZD Signal very close LZ, PRD 108, 2023 to threshold 4.25 4.00

Astrophysical neutrinos – pp neutrinos

Most ERs from pp neutrinos

Main challenge: ²²²Rn rate 10x lower than pp neutrinos (0.1 µBq/kg)

Supernova neutrinos

Sensitivity to all flavours: few events/ton from SN at ~10 kpc

- Main challenge: low energies, understand few-e- backgrounds
- XLZD: sensitivity beyond SMC; part of SNEWS2.0

LXe TPCs lead search for dark matter, enormous potential for $0\nu\beta\beta$ LZ and XENONnT will continue to take data for design exposure **DARWIN** and XLZD-UK performing R&D for next generation XLZD : a new collaboration to build a 60 tonne LXe TPC Test WIMPs down to neutrino fog Sensitive to many other dark matter candidates Rich physics reach for neutrinos and beyond

XLZD could be best in the UK