# Environmental impact of energy frontier accelerators and particle physics detectors

Véronique Boisvert (b. 329.7 CO2 ppm) @VBoisvertRHULPP



HOLLOWAY UNIVERSITY OF LONDON

& Ken Bloom (U of Nebraska)

24<sup>th</sup> September 2024 (422.2 CO2 ppm – 4.3 ppm (1%) 1 year change!)

# Outline

- See my <u>IOP 2024</u> talk
- Today:
  - Sneak peek at a review article that Ken I are working on (release in November) including looking at:



- Comparison of CO2e emissions for energy frontier accelerators
- Discussion of CO2e emissions associated with energy frontier detectors

# Emissions from Future Energy Frontier Colliders

- Several contenders to post HL-LHC: lepton collider (e and μ) and hadron colliders
- ARUP engineering company did comprehensive civil engineering LCA for ILC (TDR design (33km) not Snowmass one) and CLIC (Klystron & Drive Beam) construction
- Considered A1-A5
- FCC has now started this process (WSP)



### **ARUP final report**

# **Emissions from accelerators**

| Linear Colliders                     | COM E                  | Location | Notes                                                                      |
|--------------------------------------|------------------------|----------|----------------------------------------------------------------------------|
| ILC (e+e-)                           | 250 GeV, 500 GeV       | Japan    | SRF, 2 Linacs, site length about 20.5 km, total tunnels: 33km              |
| CLIC (e+e-)                          | 380 GeV                | CERN     | 2 beams: drive-beam (normal RF), main beam, tunnel length: 11.47 km        |
| Cool Copper Collider<br>(CCC) (e+e-) | 250 GeV, 550 GeV       | USA      | high-gradient at Liq N2 Temp., tunnel length: 8 km, "cut and cover" design |
| Circular Colliders                   |                        |          |                                                                            |
| FCC-ee/hh                            | 88 - 365 GeV/100 TeV   | CERN     | Tunnel length: 90.2 km, hh: pCM of 10 TeV                                  |
| CEPC/SppC                            | 91.2 - 360 GeV/100 TeV | China    | Tunnel length: 100 km, hh: pCM of 10 TeV                                   |
| Muon Collider                        | 10 TeV                 | USA      | Accelerator ring circ.: 17 km, collider ring circ.: 10 km                  |
| LEP3                                 | 240 GeV                | CERN     | Use LHC tunnel, improved RF                                                |
| HE-LHC                               | 27 TeV                 | CERN     | Use LHC tunnel, needs FCC-hh-like 16 T curved dipoles                      |
|                                      |                        |          |                                                                            |

#### • ARUP:

- emissions per total length:
  - CLIC: 6.38 ktCO2e/km
  - ILC: 7.34 ktCO2e/km
- Caverns & buildings: 30% of main tunnel emissions
- A4-A5: 25% of tunnels+aux.

### **Emissions from accelerators**

| Collider                       | Emissions                             | Notes (see text for more con                                      |  |
|--------------------------------|---------------------------------------|-------------------------------------------------------------------|--|
|                                | $(MtCO_2e)$                           | plete information)                                                |  |
| ILC (Japan) 250 GeV, 500 GeV   | 0.266                                 | From ARUP report [x].                                             |  |
| CEPC (China) 91.2 - 360 GeV    | 1.138                                 | From CEPC presentation [x] which                                  |  |
|                                |                                       | uses the factors of $7.0 \text{ ktCO}_2\text{e/km}$ ,             |  |
|                                |                                       | 30% for the auxiliary buildings and                               |  |
|                                |                                       | 25% for A4-A5 contributions.                                      |  |
| FCC-ee (CERN) 88 - 365 GeV     | 1.056                                 | From FCC presentation [x], the de-                                |  |
|                                |                                       | duced emissions per length of the main                            |  |
|                                |                                       | tunnel is $7.2 \text{ ktCO}_2 \text{e/km}$ .                      |  |
| CLIC (CERN) 380 GeV Drive      | 0.127                                 | From ARUP report [x].                                             |  |
| Beam                           |                                       |                                                                   |  |
| CCC (USA) 250 GeV, 550 GeV     | 0.146                                 | From CCC paper [x].                                               |  |
| Muon Collider (USA) 10 TeV     | 0.378                                 | Using 27 km for the sum of the accel-                             |  |
|                                |                                       | erator and collider rings $[x]$ and using                         |  |
|                                |                                       | factors of $7.0 \text{ ktCO}_2 \text{e/km}, 60\%$ for the         |  |
|                                |                                       | auxiliary buildings and 25% for A4-A5                             |  |
|                                |                                       | contributions.                                                    |  |
| FCC-hh (CERN) 100 TeV          | 0.245                                 | Re-using the FCC-ee tunnel, using                                 |  |
|                                |                                       | factors of $7.2 \text{ ktCO}_{2} \text{e/km}$ , 10% for the       |  |
|                                |                                       | auxiliary buildings and 25% for A4-A5                             |  |
|                                |                                       | contributions.                                                    |  |
| SPPC (China) 100 TeV           | 0.263                                 | Re-using the CEPC tunnel, using fac-                              |  |
|                                |                                       | tors of 7.0 ktCO <sub>2</sub> e/km, $10\%$ for the                |  |
|                                |                                       | auxiliary buildings and 25% for A4-A5                             |  |
|                                |                                       | contributions.                                                    |  |
| LEP3 (CERN) 240 $\text{GeV}$   | 0.061                                 | Re-using LHC tunnel, using factors of                             |  |
|                                |                                       | $6.0 \text{ ktCO}_2 \text{e/km}, 10\%$ for the auxiliary          |  |
|                                |                                       | buildings and $25\%$ for A4-A5 contri-                            |  |
|                                | · · · · · · · · · · · · · · · · · · · | butions.                                                          |  |
| HE-LHC (CERN) $27 \text{ TeV}$ | 0.061                                 | Re-using LHC tunnel, using factors of                             |  |
|                                |                                       | 6.0 ktCO_o/km 10% for the auxiliant                               |  |
|                                |                                       | $0.0 \text{ ktCO}_2 \text{e/km}, 107_0 \text{ for the auxiliary}$ |  |
|                                |                                       | buildings and 25% for A4-A5 contri-                               |  |

CEPC FCC CCC 60%: large detector cavern 10%: some reuse of caverns

### **Emissions from accelerator components**

- Embedded emissions into material not considered by ARUP-type analysis so far
- Quick order of magnitude estimate:
  - Linear Colliders:
    - SRF: Niobium cavities, eg. ILC: each cavity = 39.6 kg Niobium, carbon intensity ~75 kgCO2e/kg, ~3 tCO2e/cavity, about 8000 cavities → total of 26 ktCO2e = 27% of civil construction
  - Circular Colliders:
    - Dipole magnets: FCC-ee: 2900 dipoles, 219 kg/m Fe (Carbon intensity =2.0 kgCO2e/kg), 19.9 kg/m Al (6.8 kgCO2e/kg), magnetic length: 24m, ~14 tCO2e/dipole → Total of 40 ktCO2e (7%)

Figure 2.2 A 1.3 GHz superconducting nine-cell niobium cavity.



ILC TDR Vol. 3.ii





- Scope 1: direct emissions from organization/vehicles etc.
- Scope 2: indirect emissions from electricity generation, heating, etc. (does NOT include the emissions from building the national electricity providers)
- Scope 3: all other indirect emissions, upstream and downstream (procurement, business travel, personnel commutes, catering, etc.)
- In 2040+: Advanced economies will have zero carbon grids!
  - If they don't, there is NO POINT discussing particle physics research!
  - It is our collective and individual responsibility as citizens and scientists to HELP governments deliver this!

**Figure 6.14**  $\triangleright$  Average CO<sub>2</sub> intensity of electricity generation for selected regions by scenario, 2020-2050



2023 IEA report

2022 IEA

report

fuels. By 2030, global power sector emissions are down about 15% in the STEPS, 30% in the APS and 45% in the NZE Scenario, which sees electricity sector emissions subsequently fall to net zero by 2035 in advanced economies in aggregate, 2040 in China and just before 2045 globally (Figure 3.17). This makes the power sector the first to reach net zero emissions.

The Net Zero Emissions by 2050 (NZE) Scenario shows a narrow but achievable pathway for the global energy sector to achieve net zero CO<sub>2</sub> emissions by 2050, with advanced economies reaching net zero emissions in advance of the other scenarios. This scenario

It is consistent with limiting the global temperature rise to 1.5 °C without a temperature overshoot (with a 50% probability).

The Announced Pledges Scenario (APS) takes account of all the climate commitments made by governments around the world including Nationally Determined Contributions as well as longer term net zero emissions targets, and assumes that they will be met in full and on time. The global trends in this scenario represent the cumulative extent of

The Stated Policies Scenario (STEPS) does not take for granted that governments will reach all announced goals. Instead, it explores where the energy system might go without additional policy implementation. As with the APS, it is not designed to achieve

#### Table 2Carbon emissions due to operations of future colliders. For the CCC collider

the numbers in brackets correspond to the optimized power design (20).

| Collider                       | Start date | Duration (y) | Total Power (MW)           | Emissions (MtCO <sub>2</sub> e) |
|--------------------------------|------------|--------------|----------------------------|---------------------------------|
| ILC (Japan) 250 GeV, 500 GeV   | 2035       | 20           | 111,173                    | 0.24                            |
| CEPC (China) 91.2 - 360 GeV    | 2040       | 18           | 283 - 430                  | 1.448                           |
| FCC-ee (CERN) 88 - 365 GeV     | 2040       | 14           | 222 - 357                  | 0                               |
| CLIC (CERN) 380 GeV Drive Beam | 2040       | 8            | 110                        | 0                               |
| CCC (USA) 250 GeV, 550 GeV     | 2040       | 20           | $150 \ (87), \ 175 \ (96)$ | 0                               |



# Assume 10<sup>7</sup>s operations per year

- Still a priority to minimize average and peak power:
  - power demand will massively increase
  - power will be expensive

# Emissions from construction+operations



1 MtCO<sub>2</sub> / 10,000 scientists = 100 tCO<sub>2</sub> per scientist when should be 1-2 tCO<sub>2</sub> pp/y (and now ~10 tCO<sub>2</sub> pp/y in UK) Divide by population? Ok, but then need to get comparative numbers (NHS, defense, arts, etc.)

### Dominant CO2e emissions from CERN: gases used in experiments!



| GROUP                              | GASES                                                                                                                                                                             | tCO <sub>2</sub> e 2021 | tCO <sub>2</sub> e 2022 |
|------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|-------------------------|
| Perfluorocarbons<br>(PFCs)         | $CF_4, C_2F_6, C_3F_8, C_4F_{10}, C_6F_{14}$                                                                                                                                      | 55 921                  | 68 989                  |
| Hydrochlorofluorocarbons<br>(HFCs) | HFC-23 (CHF <sub>3</sub> )<br>HFC-32 (CH <sub>2</sub> F <sub>2</sub> )<br>HFC-134a (C <sub>2</sub> H <sub>2</sub> F <sub>4</sub> )<br>HFC-404a<br>HFC-407c<br>HFC-410a<br>HFC-507 | 36 557                  | 86 211                  |
| Other F-gases                      | $SF_{6}$ , $NF_{3}$                                                                                                                                                               | 16 838                  | 18 355                  |
| Hydrofluoroolefins<br>(HFO)/HFCs   | R-449<br>R1234ze<br>NOVEC 649                                                                                                                                                     | 86                      | 199                     |
|                                    | CO2                                                                                                                                                                               | 13 771                  | 10 419                  |
| Total Scope 1                      |                                                                                                                                                                                   | 123 174                 | 184 173                 |

# **Emissions from detectors: large?**

### GHGs in Switzerland and ATLAS+CMS

HFKW-134a

10

- According to Kyoto protocol, the emissions of GHG gases need to be monitored
  - Inventory
  - Measurements





https://www.empa.ch/documents/56101/190047/CLIMGAS-CH\_2021/bf747be6-bddf-4247-aea2-d0390c3eadc2



Inventar —Jungfraujoch-basierte Abschätzung





ATLAS

CMS

R134a



The Carbon Footprint of ATLAS

D. Britzger - ATLAS Sustainability Forum

27

### GHG in detectors

- Tracking (eg RPCs) or TOF (eg RICH)
- Methods for minimizing releases to the atmosphere:
  - Gas recirculation
  - Gas recuperation
- GHG for cooling
- Replacement of GHG with ECO-gases





### GWP<sub>100</sub> from AR5 Emissions from detectors

Main GHG in play:



C<sub>2</sub>H<sub>2</sub>F<sub>4</sub>/R-134a (1300) **RPC**: primary ionization, charge multiplication Eg ATLAS/CMS: ~15 m<sup>3</sup>



F | F F F

CF<sub>4</sub> (6630) RICH: optical properties, wire chambers: antipolymerization, MPGD: time resolution Eg RICH2: 100 m<sup>3</sup>



cooling F F



 $C_2F_6$  (11,100) RICH radiator and Si coolant



C<sub>3</sub>F<sub>8</sub> (8900) Used for evaporative cooling of TOTEM and ATLAS Si



C<sub>6</sub>F<sub>14</sub> (7910) Liquid coolant in all LHC exp.

- Gas Recirculation at LHC:
  - For large volumes:
    - ~15 at LHC, 24/7, 99.99% uptime
    - 10% injection of new gas usually still needed for detector performance
    - Expensive and complex systems
    - Optimization ongoing
  - Micro-systems:
    - As small and cheap as possible
    - Portable and standardize



G. Rigoletti, ICHEP 2024



- Gas Recuperation at LHC:
  - because can't have 100% recirculation
- Principle:
  - GHG components are separated at the exhaust
  - GHG stored and re-used as fresh gas
- For large systems:
  - Non-standard and complex
- 60-85% of exhausted gas recuperated with > 90% quality
- Eg: CMS RPC R-134a, CMS CSC CF<sub>4</sub>, LHCb RICH2 CF<sub>4</sub>, LHCb RICH1 C<sub>4</sub>F<sub>10</sub>
  - (see backup slide)







G. Rigoletti, ICHEP 2024

- In 2040+: no more F-gases, eco-gases only solution!
- Go from  $C_n F_n \rightarrow C_n F_{2n} O$  (HFOs, PFKs)
- Eg RPC ECOGas@GIF++ collaboration
  - Muon beam tests, ageing tests
- Ex:  $C_2H_2F_4/R$ -134a  $\rightarrow C_3H_2F_4/R$ -1234ze (<7)+CO<sub>2</sub>
  - Need a higher HV wp, increased currents, increased streamers
  - Mid-term solution: 30% CO<sub>2</sub>, 64% C<sub>2</sub>H<sub>2</sub>F<sub>4</sub>, 5% i-C<sub>4</sub>H<sub>10</sub>, 1% SF<sub>6</sub> (14% reduction of GWP)
  - Currently used in ATLAS RPCs
  - However <u>CBM-TOF (MRPC) group</u> decided to keep R-134a because of ageing issues



Ramos, ICHEP 2024

### Potential replacement for SF<sub>6</sub>:

G. D. Hallewell, EPJ Plus (2023)

- promising: 0.3% SF<sub>6</sub> → 0.5%
  Amolea 1224yd, 0.1% Novec
  4710
- Chemical and pollutant investigations
- Potential replacement for  $CF_4$  and  $C_4F_{10}$ :
  - C5F12/N2 (45% GWP reduction)
  - Novec 5110 (C<sub>5</sub>F<sub>10</sub>O)/N2, GWP<1</li>
  - Optical and thermodynamic studies ongoing



**Fig. 7** Left: Cherenkov thresholds for particle species versus measured sound velocity in a radiator gas combining  $C_5F_{12}$ with N<sub>2</sub>. Right:  $C_5F_{12}$ concentration. The  $C_5F_{12}$ concentration to match the LHCb RICH-2  $p^{\pm}$ ,  $K^{\pm}$  &  $\pi^{\pm}$  thresholds (with much lower GWP load: Table 1) is shown on the right axis 19

- LHC exp. moving to CO<sub>2</sub> cooling
  - But because of high triple point, can't cool to low enough temperatures
- Potential replacement for C<sub>6</sub>F<sub>14</sub> :
  - NOVEC 649 (C<sub>6</sub>F<sub>12</sub>O): similar thermophysical properties
  - Radiation hardness promising, but reacts with water
  - Now used for <u>cooling SiPM in LHCb SciFi to -50C</u>
- Potential replacement for  $C_2F_6(C_3F_8)$ :
  - NOVEC-like C<sub>2</sub>F<sub>4</sub>O (C<sub>3</sub>F<sub>6</sub>O)?? Toxicity issue
- 3M is stopping the Novec line! Future of HFO/PFK uncertain
- R&D driven by electronics industry!

G. D. Hallewell, EPJ Plus (2023)

G. D. Hallewell, ICHEP 2024



# **Negative Emissions**

- STFC has goal of being Net-Zero by 2040...
- What are going to be the <u>negative emissions methods</u>?
  - Forget about power (zero by 2030 (2035))
  - Forget about "efficiency"
- What about future energy frontier collider facilities?
- Plant trees?
  - To absorb 1MtCO2 over 10 y: need ~10 M NEW trees = 4,000-10,000 ha of land = 4x – 11x area of Richmond Park
  - After those 10y you need to cut the trees and use them (eg build houses)
  - If burn them: need to capture the CO<sub>2</sub> and store it (<u>BECCS</u>)



### **Negative emissions**

### Direct Air Capture (DAC)?

- Biggest plant is Climeworks in Iceland, operate Orca (4 ktCO2/year, 11 t/day, 1 t/2-3h), needs 8k-18k kWh/tonne
- Building <u>Mammoth</u>: 600 M USD
  - 36 ktCO2/y
  - Uses geothermal plant from Hellisheiði: 2.65 TWh/year
    > Hinckley Point C will be about 25 TWh/y
  - 1 Mt CO<sub>2</sub> = 28 years of using Mammoth



# Conclusions

#### • R&D on accelerators:

- Centre of Excellence in Sustainable Accelerators (CESA) at the STFC Daresbury Laboratory (<u>Sustainable HEP 2024</u>)
- EU Horizon: Innovate for Sustainable Accelerating Systems (iSAS) (ICHEP 2024)
- Yes minimize power
  - IMO PP facilities purchasing renewable energy providers (solar farms, etc.) is NOT a good idea!
- Look at materials
  - Including cement!
- The bigger the footprint, the more emissions!
- R&D on detectors:
  - Eg. we need to crack eco-gases (DRD1)
- R&D (and scaling up) on net zero agenda:
  - Help national grid decarbonize
  - Help negative emissions technologies
  - And more!

### ESU PP 2024-2026: Sustainability input

- Channels to contribute to Sustainability input (s), no CERN account needed:
  - CERN mailing list
  - Mattermost team
  - Indico agendas
- First meeting this Friday (27<sup>th</sup> Sept.) at 2-3.30pm CEST
  - All meetings will be recorded
- Plan to meet every 2 weeks until converge on submission (s)
- Current organizers:
  - Veronique Boisvert (Veronique.Boisvert@cern.ch)
  - Daniel Britzger (britzger@mpp.mpg.de)
  - Yann Coadou (coadou@cppm.in2p3.fr)
  - Kristin Lohwasser (kristin.lohwasser@cern.ch)
  - Peter Millington (peter.millington@manchester.ac.uk)



### UK HEP Forum 2024: Sustainable future for HEP - challenges, solutions, opportunities

Nov 25-27, 2024 Q Enter your search term Europe/London timezone Overview Timetable **Contribution List** Registration Participant List Poster **UK HEP FORUM** Contact Sustainable future of HEP: Challenges, solutions, opportu UKHEPForum@stfc.ac.uk November 26th - 27th 2024 The Cosener's House, Abingdon, Oxfordshire UK HEP Forum organising committee: R Alonso (Co chair), T. Cornford, D. Croon, S. Dixon, J. Ellis, J. Linacre, D. van Dyk, S. Ricciardi (Co chair), M. Wielers The UK HEP Forum 2024 will take place on 26-27 November 2024 at The Cosener's House in Abingdon,

Oxfordshire, and via Zoom.

### **BACK UP**

### **Emissions from accelerators: operations**

- CERN now releases <u>Environment reports</u> (1<sup>st</sup>: 2017-18, 2<sup>nd</sup>: 2019-20, 3<sup>rd</sup>: 2021-22)
- CERN peak power: ~180 MW (~ 1/3 of Geneva)
- Per year: ~ 1.2 TWh (~ 2% of Switzerland, 0.03% of Europe)
- LHC: ~55% of CERN's E consumption
- Electricity mainly comes from France:
  90% carbon free (2022)

#### Electrical power distribution 2018







### **Emissions from accelerators: construction**

- Potential future of energy frontier: <u>FCC</u> (ee then hh)
  - ~100 km tunnel, caverns, buildings, roads, etc.
- Concrete needed for the tunnel, which means (Portland) cement!
- Half of emissions from Portland clinker (<u>ref</u>)
- Ken Bloom and my rough calculation:
  - ~260k tonnes of CO2 emissions
- <u>Paper</u> on emissions from road tunnels:
  - Lowest estimate: ~500k tonnes CO2 emissions
- Comparison: Using <u>report</u> for CO2e for construction of buildings: = building 8 London Shards!



$$CaCO_3 + heat \longrightarrow CaO + CO_2$$





Plant 6 million trees!



# **Climate Change: an emergency**

- UK parliament first to approve a motion to declare an "environment and climate emergency" on 1<sup>st</sup> May 2019
- Of the top 10 GHG emitters, only Japan, Canada and the EU have legally binding target of "net zero emissions by 2050 (2045)"
  - The pandemic was a blip (lessons)
- IPCC 2015 Paris agreement: aim to stay "below 2°C" so focus on 1.5 °C
  - NDC: Countries make pledges for how to achieve this (and then increase those pledges over time)
  - Climate Action Tracker: "With all target pledges, including those made in Glasgow, global greenhouse gas emissions in 2030 will still be around twice as high as necessary for the 1.5 °C limit"





#### IPCC AR6





# **Emissions from detectors: solutions**

2020: CERN launched a working group on managing F-gases, with representatives from the departments concerned and the large LHC experiments. The group looked at issues such as the implementation of a centralised F-gas procurement policy, leak detection, replacement alternatives, training courses for personnel handling F-gases, and improving traceability and reporting.

![](_page_30_Figure_2.jpeg)

### **Emissions from detectors: solutions**

- Crucial to do R&D in finding replacements (eco-gases) and ensure 100% leak-free and 100% recirculation
  - CERN has tested NOVEC 649: Equivalent radiation stability to C<sub>6</sub>F<sub>14</sub> used as a liquid coolant in all LHC experiments

![](_page_31_Figure_3.jpeg)

![](_page_31_Figure_4.jpeg)

![](_page_31_Picture_5.jpeg)

<u>The "green" use of fluorocarbons in Cherenkov</u> <u>detectors and silicon tracker cooling systems:</u> <u>challenges and opportunities in an unfolding era of</u> alternatives

# Embedded emissions from accelerators & detectors

#### HECAP+ 2023

Future projects need to compute the full life cycle analysis of emissions of all accelerator and detector components

| Inputs                                       | Quantity                 | Outputs                                     | Quantity                 |
|----------------------------------------------|--------------------------|---------------------------------------------|--------------------------|
| Hydrogen chloride HCl<br>(hydrochloric acid) | 0.00675 kg               | Co-products: Si in other<br>co-products     | 0.000286 kg              |
| Graphite (as electrode<br>material)          | 0.000163 kg              | Co-products: Silicon<br>tetrachloride       | 0.00415 kg               |
| Wood chips                                   | 0.00183 kg               | Co-products: Si<br>residues for solar cells | 65.2 ×10 <sup>-6</sup>   |
| Petroleum coke                               | 0.000597 kg              | Polished silicon wafer                      | 1 cm <sup>2</sup>        |
| Quartz                                       | 0.00486 kg               |                                             |                          |
| Electricity                                  | 0.385 kWh                |                                             |                          |
| Dry wood                                     | 0.00398 kg               |                                             |                          |
| Air emissions                                | Quantity                 | Discharge to Water                          | Quantity                 |
| CH <sub>4</sub>                              | 68.8×10 <sup>-6</sup> kg | Metal chlorides                             | 0.000787 kg              |
| со                                           | 0.000167 kg              |                                             |                          |
| CO <sub>2</sub>                              | 0.00833 kg               | Waste                                       | Quantity                 |
| Ethane                                       | 29×10 <sup>−6</sup> kg   | SiO <sub>2</sub>                            | 16.3×10 <sup>−6</sup> kg |
| H <sub>2</sub> 0                             | 0.00188 kg               |                                             |                          |
| Methanol                                     | 85.1×10 <sup>−6</sup> kg |                                             |                          |
| NOx                                          | 13.8×10 <sup>−6</sup> kg |                                             |                          |
| Particulate matter                           | 0.000201 kg              |                                             |                          |
| SO <sub>2</sub>                              | 34.4×10 <sup>−6</sup> kg |                                             |                          |
| Hydrogen                                     | 0.000125 kg              |                                             |                          |

Best Practice 6.1: Life cycle data for a silicon wafer

Table 6.1: Inputs, outputs and emissions of silicon wafer production [194].

### Gas Recuperation systems at LHC experiments

Sometimes it is not possible to recirculate 100% of the gas mixture due to detector constrains

- Air permeability, max recirculation fraction, impurities, etc.
- A fraction of gas has to be renewed
- Some gas is sent to the atmosphere
- This fraction of gas mixture can be sent to a recuperation plant where the GHG is extracted, stored and re-used
  - Challenges: R&D, custom development, operation and recuperated gas quality
- Gas recuperation also to empty/fill the detectors during LS

![](_page_33_Figure_8.jpeg)

gas exhaust if not GAS RECUPERATION recuperation Surface Gas Building SGX Primary gas supply Purifier - Mixer  $\begin{array}{ccc} CO_2 & Xe, \\ C_2H_2F_4 & C_4F_{10} \end{array}$ — Humidifier Mixer Purifier iC4H10,  $N_2$ - Pre-distribution and pump Humidif Distribution Primary gas Gas mixing supply room SGX-USC High pressure part of Pipe length the Gas Circulation System ~235 m USC Gas racks in Underground Service ar Low pressure part of Length ~ 70 n the Gas Circulation System

### The R134a recuperation system for RPCs

#### ATLAS and CMS RPC Gas Systems

- Detector volume ~15 m<sup>3</sup>
- Gas mixture: ~95% C<sub>2</sub>H<sub>2</sub>F<sub>4</sub>, ~5% iC<sub>4</sub>H<sub>10</sub>, 0.3% SF<sub>6</sub>
- Gas recirculation: ~90%
  - Maximum recirculation validated for RPC detectors
- Fundamental to repair detector leaks
  - To have the gas at the exhaust of the gas system

#### R134a and iC<sub>4</sub>H<sub>10</sub> form an azeotrope

#### A mixture of liquids whose proportions cannot be altered or changed by simple distillation

![](_page_34_Figure_10.jpeg)

C<sub>2</sub>H<sub>2</sub>F<sub>4</sub> recuperation prototype system under study in CMS Experiment

![](_page_34_Picture_12.jpeg)

under construction: installation foreseen beginning of 2023 in CMS experiment 35

12 Oct 2022

### Gas disposal

#### Abatement plants are employed when GHGs are polluted and therefore are not reusable

In case all studies on recuperation will not bring to efficient recuperation plants, industrial system able to destroy GHGs avoiding their emission into the atmosphere have been considered

#### Quite heavy infrastructure required:

- CH<sub>4</sub>/city gas + O<sub>2</sub> supply + N<sub>2</sub> supply
- Waste water treatment
- PFC/HFC are converted in CO<sub>2</sub> + HF acid dissolved in water
- disposal of remaining waste/mud
  - To have the gas at the exhaust (600-1000 l/h)

![](_page_35_Picture_9.jpeg)

Found also companies available to take PFC/HFC based mixture for disposal: but extremely expensive

**Beatrice Mandelli** 

Top Annual CO<sub>2</sub> Emitting countries, 2020

(from fossil fuels)

![](_page_36_Figure_2.jpeg)

 $\mathrm{CO}_2$  emissions per capita vs. share of electricity generation from renewables, 2022

Carbon dioxide (CO<sub>2</sub>) emissions are measured in tonnes per person.

![](_page_36_Figure_5.jpeg)

**Data source:** Global Carbon Budget (2023) and other sources OurWorldInData.org/co2-and-greenhouse-gas-emissions | CC BY Our World in Data

# List of top CO<sub>2</sub> emitters

### **Forbes**

|              | 2018 CO2 Emissions     | Global | Change Since   |  |
|--------------|------------------------|--------|----------------|--|
| Country      | in Billion Metric Tons | Share  | Kyoto Protocol |  |
| China        | 9.43                   | 27.8%  | 54.6%          |  |
| U.S.         | 5.15                   | 15.2%  | -12.1%         |  |
| India        | 2.48                   | 7.3%   | 105.8%         |  |
| Russia       | 1.55                   | 4.6%   | 5.7%           |  |
| Japan        | 1.15                   | 3.4%   | -10.1%         |  |
| Germany      | 0.73                   | 2.1%   | -11.7%         |  |
| South Korea  | 0.70                   | 2.1%   | 34.1%          |  |
| Iran         | 0.66                   | 1.9%   | 57.7%          |  |
| Saudi Arabia | 0.57                   | 1.7%   | 59.9%          |  |
| Canada       | 0.55                   | 1.6%   | 1.6%           |  |

### Economicshelp.org

![](_page_37_Figure_4.jpeg)

38

### **Emissions pathway**

![](_page_38_Figure_1.jpeg)

![](_page_39_Figure_0.jpeg)

Source: Table 1.2, Final UK greenhouse gas emissions national statistics 1990-2019 Excel data tables Note: LULUCF is land use, land use change and forestry.

### **World Emissions Clock**

# Green electricity grids by 2035

### Germany's target updated in 2022

- The US, Canada and UK have already committed to a similar goal [100% renewable electricity grid by 2035]. Denmark is already aiming for more than 100% renewable power by 2027, Austria 100% by 2030 and Portugal and the Netherlands are well on track with recent plans to expand renewable capacities till 2030."
- <u>US pledge</u>
- <u>UK CCC plan</u>: