Silicon Vertex and Tracking sensor technologies: from LHC to FCC [DRD3]

Eva Vilella [with inputs from many others... thanks!] University of Liverpool <u>vilella@hep.ph.liv.ac.uk</u>

Overview

- Introduction: Silicon vertex and tracking detector technologies
- Current R&D for 2030s detectors
- Replacement options for ATLAS and CMS layers
- Smaller-scale detector systems for the 2030s
- Future collider requirements (FCC-ee and other e+e- colliders)
- Speculative remarks on FCC-hh
- Monolithic CMOS sensors in future detectors
- Low-mass service systems for silicon sensors
- Non-silicon sensors
- Conclusion and outlook

Silicon vertex and tracking detector technologies

Particle vertexing

- Exact point of origin (vertex) of a particle within a collision event
- For identifying primary and secondary vertices

Particle tracking

- Reconstructing the trajectory of a particle as it travels through a detector
- Provides crucial information about the particle's momentum, direction and charge

Currently at the LHC – Silicon is everywhere!

	Pixels	Strips
Hybrid	 ATLAS Pixel Detector + B-Laye CMS Pixel Detector LHCb VELO 	 ATLAS SemiConductor Tracker CMS Tracker LHCb Upstream Tracker
Monolithic	ALICE ITS 2	3th a Chin
TLAS Pixel Detecto	r N N N N N N N N N N N N N	Image: Note of the sectorImage: No

26.09.2024 – ECFA-UK Meeting @ Durham – Eva Vilella

UNIVERSITY OF

LIVERPOOL

Currently at the LHC

UK Research and Innovation

LIVERPOOL

КŁ

5

Currently at the LHC

[Hybrid silicon strips before that]

		LHCD VELO PIXEIS (IN LSZ)
	Pixels	Process n-on-p planar
Hybrid	 ATLAS Pixel Detector + B-Layer CMS Pixel Detector LHCb VELO 	Pixel size 55 μm x 55 μm Thickness 200 μm TID 400 Mrad (VeloPix) NIEL 8e15 n _{eq} /cm ²
Monolithic	• ALICE ITS 2	Readout chip VeloPix (130 nm CMOS) Total area 0.12 m ²

26.09.2024 – ECFA-UK Meeting @ Durham – Eva Vilella

LIVERPOOL

Currently at the LHC

26.09.2024 – ECFA-UK Meeting @ Durham – Eva Vilella

LIVERPOO

	ATLAS ITk Pixels
Pixels Hybrid ATLAS ITk – Pixels • CMS Pixel Detector • LHCb VELO	 Process n-on-p planar & 3D (innermost layer) Pixel size 50 μm x 50 μm (planar, 3D), 25 μm x 100 μm (3D) Thickness 100-150 μm (planar), 150 μm (3D) TID 500 Mrad (ITkPixV1)
Monolithic • ALICE ITS 2	 NIEL 1e16 n_{eq}/cm² (ITkPixV1) Readout chip ITkPixV1 (65 nm CMOS) Total area 13 m² (pixels), 165 m² (strips)
	Hybrid planar and Bride

26.09.2024 – ECFA-UK Meeting @ Durham – Eva Vilella

Pixel region (13 m²)

New challenges

Complete HL-LHC

FCC-ee

- High precision
- Low mass
- Low power
- FCC-hh
 - Low power
 - High radiation tolerance (8e17)
- **DRD3** Research topics Monolithic silicon sensors **WG1** Hybrid silicon technologies **WG2** WG3 Extreme fluence **WG4** Simulation WG5 Characterisation techniques Wide bandgap and innovative sensors **WG6** materials (diamond, SiC, GaN) **WG7** Interconnections and device fabrication
- Pile-up mitigation by ultra-fast timing in O(10-100 ps)

DRDE

- Sensors with fully integrated electronics, mechanics and services
- Large area sensors at low cost

DRD3.1 Monolithic silicon sensors

- Aim is to advance the performance of monolithic CMOS, combining sensing and readout elements, tackling the challenges of:
 - Very high spatial resolution
 - Good timing performance
 - High data rate
 - High radiation tolerance
 - Keeping an affordable cost
 - Low mass
 - Covering large areas
 - Reducing power
 - And ultimately combining all these in one single device

DRD3.1 research goals <2027

- **1.1** Position resolution: $\leq 3 \mu m$
- **1.2** Timing resolution: towards 20 ps
- 1.3 Readout architectures: towards 100 MHz/cm², 1 GHz/cm² with 3D stacked monolithic sensors, and on-chip reconfigurability
- 1.4 Radiation tolerance: towards e16 n_{eq}/cm²
 NIEL and 500 Mrad TID
- **1.5** Low-cost large-area CMOS sensors

- Monolithic CMOS sensors for fast-timing (without and with gain layer for internal amplification), in several processes
- Arcadia type sensors
- Versatile CMOS sensor for several future tracking applications
- Thin radiation tolerant HV-CMOS sensors

- Radiation hard readout architectures
- Fine-pitch CMOS sensors for lepton colliders
- Ultra-low mass tracking detectors
- CMOS strips
- New processes

DRD3.2 Hybrid silicon technologies

- Aim is to advance the performance of different sensor technologies (TI-, AC-, invers- DJ-LGAD, 3D, etc.) for several specific applications:
 - Future upgrades beyond LHC Phase-II might use 4D layers at moderate radiation levels $(1-3e15 n_{eq}/cm^2)$ with 10-30 µm spatial resolution
 - LHCb and FCC-hh will require >1e16 n_{eq} /cm²
 - Radiation tolerance limited by
 loss of gain → material engineering
 or 3D possible solution at extreme fluences

DRD3.2 research goals <2027

- **2.1** Reduction of pixel cell size for 3D sensors
- **2.2** 3D sensors for timing (50 × 50 μm, < 50 ps)
- 2.3 LGAD for 4D tracking <10 μm, <30 ps, wafer6" and 8"
- **2.4** RSD for ToF (Large area, <30 μm, <30 ps)

12

UK Research

and Innovation

DRD3.6 Wide bandgap and innovative sensor materials

 WBG semiconductors can be used for timing applications due to the high carrier saturation velocity, and their radiation tolerance makes them suitable for extreme fluence with the added advantage that they can be operated without cooling.

DRD3.6 research goals <2027

- 6.1 3D diamond detectors
- **6.2** Fabrication of large-area SiC and GaN detectors, improve material quality and reduce defect levels
- **6.3** Improve tracking capabilities of WBG materials
- **6.4** Apply graphene and/or other 2D materials in radiation detectors, understand signal formation

	Pixels	Strips
Hybrid	 ATLAS ITk – Pixels CMS Pixel Detector LHCb VELO 	 ATLAS ITk – Strips CMS Tracker
Monolithic	ALICE ITS 3, ALICE 3LHCb Mighty Tracker & UP	

[A selection]

26.09.2024 – ECFA-UK Meeting @ Durham – Eva Vilella

UNIVERSITY OF

LIVERPOOL

26.09.2024 – ECFA-UK Meeting @ Durham – Eva Vilella

LIVERPOOL

26.09.2024 – ECFA-UK Meeting @ Durham – Eva Vilella

16 WK Research and Innovation

LIVERPOO

RD50-MPW4

- High breakdown voltage and high radiation tolerance
 - Multiple ring structure around the chip edge
 - Substrate backside-biasing to high voltage
- Fabrication details
 - 150 nm High Voltage CMOS LFoundry (LF15A)
 - P-type substrate with nominal 3 k Ω ·cm high resistivity
 - 280 µm thin
- Chip contents
 - Pixel matrix with FE-I3 style readout
 - 64 x 64 pixels
 - 62 μm x 62 μm pixels with large collection electrode
 - Digital periphery (I2C slow control, data transmission)
- Irradiation campaign
 - Neutrons \rightarrow several fluence from 1e14 to 3e16 n_{eq}/cm²

			ALICE Inner Tracking System 3
		Pixels	Process 65 nm CMOS (TPSCo)
	Hybrid	 ATLAS ITk – Pixels CMS Pixel Detector LHCb VELO 	Pixel size Thickness 50 μm TID 10 kGy NIEL e13 n _{eq} /cm ²
	Monolithic	 ALICE ITS 3, ALICE 3 LHCb Mighty Tracker & UP 	Power consumption 20 mW/cm ² Chip size 27 cm x 9 cm (chip stitching) Total area 60 m ²
Inner	S2 Barrel	Image: State and the series of dummy site on, 40-50 um thick Image: State and the series of dummy site on, 40-50 um thick Image: State and the series of dummy site on, 40-50 um thick Image: State and the series of dummy site on, 40-50 um thick Image: State and the series of dummy site on, 40-50 um thick Image: State and the series of dummy site on, 40-50 um thick Image: State and the series of dummy site on, 40-50 um thick Image: State and the series of dummy site on, 40-50 um thick Image: State and the series of dummy site on, 40-50 um thick Image: State and the series of dummy site on, 40-50 um thick Image: State and the series of dummy site on, 40-50 um thick Image: State and the series of dummy site on, 40-50 um thick Image: State and the series of dummy site on, 40-50 um thick Image: State and the series of dummy site on, 40-50 um thick Image: State and the series of dummy site on, 40-50 um thick Image: State and the series of dummy site on, 40-50 um thick Image: State and the series of dummy site on, 40-50 um thick Image: State and the series of dummy site on, 40-50 um thick Image: State and the series of dummy site on, 40-50 um thick Image: State and the series of dummy site on, 40-50 um thick Image: State and the series of dummy site on, 40-50 um thick Image: State and the	Replacing the 3 innermost layers with new ultra-light, truly cylindrical layers • Reduced material budget by re- water cooling, circuit ' mechanical • Closer to the Improved ver reduce
6.09.202	24 – ECFA-UK M	eeting @ Durham – Eva Vilella	1 UK Research and Innovation

LIVERPOOL

ALICE ITS3 chip development roadmap

UK Research and Innovation

LIVERPOOL

19

ŘŤ

26.09.2024 – ECFA-UK Meeting @ Durham – Eva Vilella

22 WK Research and Innovation

Non-LHC – EIC ePIC detector

- Requirements for its silicon vertex and tracking detectors
 - Pixel size ~10 μm
 - Material budget 0.05% X/X0 per layer
 - Time resolution O(100 ns)
 - Fake-hit rate <e-7</p>
 - Radiation tolerance ~e15 n_{eq} /cm² at 20 °C

In line with ALICE ITS3 sensor specifications (+ similar timeline)

EIC detector based on ITS3 65 nm CMOS sensor (with stitched staves)

Other non-LHC experiments

- Mu3e Phase I: first application of monolithic HV-CMOS in an experiment
 - Low material 50 μ m
 - Good time resolution < 20 ns (for pixels)</p>
 - Fine segmentation 80 μm x 80 μm
- Mu3e Phase II:
 - Will require much improved timing
- KOTO-II at JPARC (flavour physics at fixed target programme):
 - Plans to develop and deliver novel silicon detectors for its tracker

FCC-ee

- Requirements for its silicon vertex and tracking detectors
 - Small pixel size for high precision
 - Low mass
 - Low power
 - Moderate radiation tolerance
 - Large area coverage
- Other e+e- colliders
 - Similar technology requirements

FCC-hh

How will technology look like in 50 years time?

 FCC-hh will require even more advanced radiation tolerant detectors than the LHC experiments.

Wide Bandgap materials

- Input from
 - RD42
 - RD50
 - DRD3-WG6
- Diamond
 - Well established
 - Used at LHC (ATLAS, CMS)
- SiC
 - Very attractive developments in RD50/DRD3

GaN

At an early stage

CVD diamond – Development goals

- Removal of surface defects
 - few per cm² \rightarrow < 1 per cm²
- Wafer charge collection distance (d) in pCVD
 - 400 μm **→ 500 μm**
- Size of wafers = 15 cm (6 inch) diameter state-of-art fixed by microwave frequency (not expected to change)
- Wafer uniformity
 - 5% → 2% across whole wafer
- Price per cm²
 - ~1500 USD/cm² → 800 USD/cm²

28

UK Research

and Innovation

3D diamond detectors – Possible FCC devices

- 3D seems to be a viable option to enhance radiation tolerance
- Radiation hardness requirement and resulting Schubweg dictate cell size
- Cell size determined by wire-diameter (1 mm) and cell capacitance
- (25mm)² or even below seems feasible
 - Loss of efficiency small at 10¹⁷ peq
 - $25 \div 2 \times \sqrt{2} = 18$ mm drift path vs λ = 18 mm

Leakage current not an issue

 Main technological challenge for large scale application is the scaling of wire production

SiC status

Physical Parameter	Si	4H-SiC
Band gap energy [eV]	1.12	3.26
Thermal conductivity [W/K·cm]	1.5	4.9
Breakdown field [MV/cm]	0.3	3.0
Electron saturation drift velocity (cm/s)	1×10 ⁷	2×10 ⁷
Hole saturation drift velocity (cm/s)	0.6×10 ⁷	1.8×10 ⁷
Mean ionization energy for e/h pair (eV)	3.6	7.8
Atomic shift threshold energy(eV)	13	22

UK Research and Innovation

30

UNIVERSITY OF

LIVERPOOL

SiC status: radiation tolerance

- CCE follows a power law (∝ Φ^{-0.56}), even for different bias voltages
- CCE > 10% for $1 \cdot 10^{16} n_{eq}/cm^2$
- More work needed to increase radiation hardness of SiC:
 - Annealing
 - Defect engineering

SiC status: planar 4H-SiC wafer-run

- In collaboration with CNM
- 3 x 50 μm & 2 x 100 μm active thickness
- Design at HEPHY, processing at CNM
- First samples are being tested
- Includes:
 - Pad & strip detectors, resistive detectors
 - Diodes for edge-TCT
 - Pixel array
 - MOSCAPs & MOSFETs (various forms and sizes)
 - Gate controlled diodes
 - Test structures (van der Pauw, Kelvin-bridge...)

Conclusion

- Solid-state sensors are everywhere in physics experiments
- Many cutting-edge technologies developed already fit for present experiments
- Several challenges ahead in view of future experiments
 - High spatial resolution
 - High radiation tolerance
 - Zero mass
 - Fully integrated with electronics, mechanics, services
 - Large area sensors at low cost
- R&D programme to develop new technologies and get us there

Back up slides

26.09.2024 – ECFA-UK Meeting @ Durham – Eva Vilella

LIVERSITY OF

Longer term LHC schedule

Run 1 = 2011-12 Run 2 = 2015-18

Last update: June 24

From:

https://lhc-commissioning.web.cern.ch/schedule/LHC-long-term.htm

Shutdown/Technical stop Protons physics Ions (tbc after LS4) Commissioning with beam Hardware commissioning

Longer term ALICE schedule

26.09.2024 – ECFA-UK Meeting @ Durham – Eva Vilella

LIVERPOOL