Fundamental Physics Opportunities from Quantum Technologies

Edward Hardy

UNIVERSITY OF

ECFA-UK Meeting

Situation

Standard Model of particle physics + ΛCDM are spectacularly successful!

Situation

Standard Model of particle physics + ΛCDM are spectacularly successful!

Situation

Standard Model of particle physics + ΛCDM are spectacularly successful!

However ...

- Origin and stability of the electroweak scale $m_h \simeq 125.5 \text{ GeV} \ll M_{\text{Planck}}$
- Strong CP problem
- Neutrino masses

 $\ket{
u_{lpha}} = \sum_i U_{lpha i} \ket{
u_i}$

- Structure of fermion generations and masses
- Dark matter
- Origin of the matter/ antimatter asymmetry
- Dark energy = cosmological constant?
- Cosmological history at $T \gtrsim MeV$
- Quantum gravity. Inflation. Supersymmetry.

However ...

- Origin and stability of the electroweak scale
- Strong CP problem
- Neutrino masses
- Structure of fermion generations and masses
- Dark matter
- Origin of the matter/ antimatter asymmetry
- Dark energy = cosmological constant?
- Cosmological history at $T \gtrsim MeV$
- Quantum gravity. Inflation. Supersymmetry.

Computation of Quark Masses from String Theory

[Quanta]

Andrei Constantin (Oxford U., Theor. Phys.), Cristofero S. Fraser-Taliente (Oxford U., Theor. Phys.), Thomas R. Harvey (Oxford U., Theor. Phys.), Andre Lukas (Oxford U., Theor. Phys.), Burt Ovrut (Pennsylvania U.)

Experimental discoveries are vital!

No single guaranteed way forward Challenging but also exciting Not even a dominant theoretical expectation WDM limit OCD axion unitarity limit 10^{-22} eV $10 M_{\odot}$ $M_{\rm pl}$ GeV classic window keV 100 TeV10⁻⁶ - 10⁻⁴ eV

- Major open questions
- No no-lose theorems

E.g. dark matter

Well-established strategies have impressive reach

LZ projections https://doi.org/10.3390/universe5030073

FCC-ee https://cerncourier.com/a/fcc-the-physics-case/

Quantum technologies open up new opportunities

- Origin and stability of the electroweak scale
- Strong CP problem \bullet
- Neutrino masses \bullet
- Structure of fermion generations and masses \bullet
- Dark matter
- Origin of the matter/ antimatter asymmetry \bullet
- Dark energy = cosmological constant? \bullet
- Cosmological history at $T \gtrsim MeV$
- Quantum gravity. Inflation. Supersymmetry.

Quantum Technologies for Fundamental Physics

In late 2020, seven projects were funded with a £31 million investment to demonstrate how quantum technologies could solve some of the greatest mysteries in fundamental physics.

https://uknqt.ukri.org/our-programme/qtfp/

Principal investigator: Ed Daw

$$\theta' = \theta_0$$

- Origin and stability of the electroweak scale \bullet
- Strong CP problem \bullet
- Neutrino masses \bullet
- Structure of fermion generations and masses ullet
- Dark matter
- Origin of the matter/ antimatter asymmetry \bullet
- Dark energy = cosmological constant? \bullet
- Cosmological history at $T \gtrsim MeV$ ullet
- Quantum gravity. Inflation. Supersymmetry. ullet

Quantum sensors for the hidden sector

+
$$\arg \left(\operatorname{Det} M_q\right) \lesssim 10^{-10}$$

$$\frac{a}{f_a} \frac{\alpha_s}{8\pi} G_{\mu\nu} \tilde{G}^{\mu\nu}$$

$$\frac{a}{f_a} \frac$$

 $P_{a\gamma\gamma} = 5.0 \times 10^{-23} \,\mathrm{w}$

- Origin and stability of the electroweak scale lacksquare
- Strong CP problem
- Neutrino masses
- Structure of fermion generations and masses \bullet
- Dark matter
- Origin of the matter/ antimatter asymmetry \bullet
- Dark energy = cosmological constant? \bullet
- Cosmological history at $T \gtrsim MeV$ \bullet
- Quantum gravity. Inflation. Supersymmetry. \bullet

Determination of absolute neutrino mass using quantum technologies

Principal investigator: Ruben Saaykan

 ${}_{1}^{3}\mathbf{H}$

•
$$E_{kin} = Q_{\beta} = 18.6 \text{ keV}, B = 1 \text{ T}$$

• $f = 27 \text{ GHz}, \lambda \sim 1 \text{ cm} \rightarrow \text{microwaves}$

- Basic technology demonstration (2021 - 2025)
- Tritium demonstration at Culham (2025 - 2030 +)
- Final neutrino mass experiment with $\sim 10-50$ meV sensitivity at Culham or similar facility (2030–2040)

https://indico.cern.ch/event/ 1261135/contributions/ 5333590/attachments/ 2622745/4535157/ iopApril2023.pdf

Principal investigator: Oliver Buchmuller

A UK atom interferometer observatory and network

https://royalsocietypublishing.org/doi/pdf/10.1098/rsta.2021.0060

cosmology

Principal investigator: Andrew Casey

Quantum enhanced superfluid technologies for dark matter and

Quantum-enhanced Interferometry for new physics

Principal investigator: Hartmut Grote

Quantum simulators for fundamental physics

Quantum Black Hole: - Black hole ring-down

1+1-Dimensional Black Hole Simulator

- Fibre-optical solitons
- Quantum Light Detectors
- Black Hole Spectral Stability

2+1-Dimensional Black Hole Simulator

- Biggest Quantum Vortex Flows
- Off-axis Holography Detectors
- Black Hole Bound states and Instabilities

2+1-Dimensional Black Hole Simulator

- State-of-the-art nanotechnology facilities
- Superconducting microwave micro-structures
- Quantum Fields Dynamics & Quantised Rotation

[lan Shipsey's slides **ECFA-UK** physics kick off]

A. Zenesini [™], A. Berti, R. Cominotti, C. Rogora, I. G. Moss, T. P. Billam, I. Carusotto, G. Lamporesi [™], A.

Conclusions

- Beyond SM physics might take an enormous range of forms
- Quantum assisted searches are complementary to other approaches
- Potentially sensitive to some of the best "theoretically-motivated" scenarios
- Automatic links to technology developments

Conclusions

- Beyond SM physics might take an enormous range of forms
- Quantum assisted searches are complementary to other approaches
- Potentially sensitive to some of the best "theoretically-motivated" scenarios
- Automatic links to technology developments
 - Thanks!