The Deep-Inelastic Scattering Landscape

e γ*(Q²) (X) p

- 1) Overall DIS Context
- 2) The Electron Ion Collider / ePIC Experiment
- 3) Introduction to the Large Hadron electron Collider

ECFA-UK Meeting on Studies for the ESPPU (Durham) 24 September 2024

Paul Newman (Birmingham)

Max Klein 13/5/1951 - 23/8/2024

Max Klein 13/5/1951 - 23/8/2024

arXiv:1206.2913

arXiv:2007.14491

Max Klein 13/5/1951 - 23/8/2024

Scattering Experiments Exploring Matter

<u>1911, Rutherford discovery of atomic nucleus</u> "It would be of great scientific interest if it were possible to have a supply of electrons ... of which the individual energy of motion is greater even than that of the alpha particle." [1926]

<u>1950s, Hofstadter, 200 MeV electrons</u> <u>on fixed targets</u> First observation of finite proton size

1969, SLAC, 20 GeV electrons on fixed targets

Absence of dependence of (suitably expressed) cross section on q² (= squared 4 momentum transfer) implies scattering from point-like quarks 5 The only ever collider of electron with proton beams: √s_{ep} ~ 300 GeV

- Equivalent to **50 TeV** electrons on fixed target

... Resolved dimension ~ 10⁻²⁰ m

→ Source of much of our knowledge of proton (longitudinal) structure extending to partons of x<10⁻⁴ mom^m fraction

BUT ... → Only ~0.5 fb⁻¹ per experiment → No deuterons or nuclei → No polarised targets

Proton PDFs from HERA (HERAPDF2.0)

The Electron-Ion Collider

Physics questions to be addressed at EIC

- How is proton mass generated from quark and gluon interactions?

Atom: Binding/Mass = 0.00000001 Nucleus: Binding/Mass = 0.01 Proton: Binding/Mass = 100

- What does the proton look like in 3D?

- How is proton spin generated?

- How do the dynamics of high density systems of gluons tame the low x growth?

Fraction of Overall Proton Momentum Carried by Parton

Semi-Inclusive

Observables / Detector Implications

 Traditional DIS, following on from fixed target experiments and HERA → Longitudinal structure ... high acceptance, high performance electron identification and reconstruction

- Single particle, heavy flavour & jet spectra
 - \rightarrow p_T introduces transverse degrees of freedom
- Quark-flavour-identified DIS
 - \rightarrow Separation of u,d,s,c,b and antiquarks
 - ... tracking and hadronic calorimetry
 - ... heavy flavour identification from vertexing
 - ... light flavours from dedicated PID detectors

Processes with final state 'intact' protons

 Correlations in space or
 momentum between pairs of partons
 efficient proton tagging over wide
 acceptance range
 high luminosity

A Detector for the EIC

Magnet

New 1.7 T SC solenoid, 2.8 m bore diameter

Tracking

- Si Vertex Tracker MAPS wafer-level stitched sensors (ALICE ITS3)
- Si Tracker MAPS barrel and disks
- Gaseous tracker: MPGDs (µRWELL, MMG) cylindrical and planar

PID

- high performance DIRC (hpDIRC)
- dual RICH (aerogel + gas) (forward)
- proximity focussing RICH (backward)
- ToF using AC-LGAD (barrel+forward)

EM Calorimetry

- imaging EMCal (barrel)
- W-powder/SciFi (forward)
- PbWO₄ crystals (backward)

Hadron calorimetry

- FeSc (barrel, re-used from sPHENIX)
- Steel/Scint W/Scint (backward/forward)
- 9m long x 5m wide
- Hermetic (central detector $-4 < \eta < 4$)
- Extensive beamline instrumentation not shown (see later)
- 12 Much lower radiation fluxes than LHC widens technology options

Proton/Ion beam

UKRI-Infrastructure-Funded UK Involvement

WP1: MAPS → 65nm CMOS (wafer scale) stitched sensors, developed from ALICE-ITS3, to be deployed in central tracker
 → Construction of 2 barrel layers, corresponding to around 1/3 of silicon tracker

WP2: Timepix \rightarrow Application of pixel sensors for beamline electron tagger for luminosity and physics at $Q^2 \rightarrow 0$

WP3: Lumi Monitoring \rightarrow Novel pair-spectrometer, beamline $\gamma \rightarrow$ ee counting

WP4: Accelerator → Primarily SRF systems for Energy Recovery cooler.
→ Also crab-cavity RF synchronisation, beam position monitoring, Energy Recovery modelling and design

Tracking Detectors

Primarily based on MAPS silicon defectors (65nm technology)

- Leaning heavily on ALICE
- Stitched wafer-scale sensors, thinned and bent around beampipe

 \rightarrow Very low material budget (0.05X₀ per layer for inner layers)

- 20x20µm pixels
- 5 barrel layers + 5 disks (total 8.5m² silicon)

MAPS

Interaction Region / Beamline Instrumentation

- Extensive beamline instrumentation integrated into IR design

- Tagging electrons and photons in backward direction for lowest Q^2 physics studies and lumi monitoring via photon counting in ep \rightarrow ep γ

More ePIC Detector (with synergies elsew

Imaging eCAL

Comprehensive Particle ID

Hillman Rollers

Impact of EIC on Parton Densities

Fractional total uncertainties with / without simulated EIC data added to HERA (linear x scale)

... EIC brings reduction ir large x uncertainties for all parton species

Also:

- $\alpha_s(M_Z^2)$ to 0.3% (cf 0.6% now)

- Nuclear parton densities at low x for the first time

Proton Spin

- Spin $\frac{1}{2}$ is much more complicated than $\uparrow\uparrow\downarrow$...
- EMC 'spin crisis' (1987) ... quarks only carry
- ~10% of the nucleon spin (spin $\frac{1}{2}$ more than $\uparrow\uparrow\downarrow$)
- Very little known about gluon helicity contribution and low x region

Jaffe-Manohar sum rule:

Quark helicity Gluon helicity

Quark canonical Gluon canonical orbital angular momentum momentum

EIC Yellow Report

- Simulated EIC inclusive data (15fb⁻¹, 70% e,p Polaris'n) shows very significant impact on polarised gluon and quark densities \rightarrow orbital angular momentum constrained by implication

Room left for potential OAM contributions to the proton spin from partons with x > 0.001

Proton Mass

- Constituent quark masses contribute ~1% of the proton mass
- Remainder is `emergent' \rightarrow generated by (QCD) dynamics of multi-body strongly interacting system
- Decomposition along similar lines to spin:

Valence and sea quark masses (including heavy quarks) QCD trace anomaly (purely quantum effect - chiral condensates)

Quark and gluon 'KE' and 'PE' from confinement and relative motion

Understanding 3D relative location and motion of partons within proton is pathway to understanding proton mass emergence 19

3D Structure

Exclusive processes, yielding intact protons, require exchange of ≥ 2 partons

→ Sensitive to parton correlations in longitudinal
 & transverse momentum and spatial coordinates

Status / Timeline

- Total cost ~\$2.5Bn (US project funds accelerator + most of one detector)

CD-0 (Mission need)	Dec 2019
CD-1 (Cost range)	June 2021
CD-3A (Start construction)	April 2024
CD-3B	March 2025
CD-2 (Performance baseline)	2025?
CD-4 (Operations / completion)	2032-34

Technical Design Report: end 2025 (prelim 2024)

FY20 **FY22** FY23 FY24 FY25 FY26 FY27 **FY28** FY29 **FY30 FY33 FY34** FY19 FY21 FY31 FY32 FY35 01 02 03 04 01 02 CD-0(A) CD-1 (A) CD-3A CD-2/3 CD Construction Phase Early CD-4 CD-4 Jan 2024 Dec 2019 Jun 2021 CD-3B Apr 2025 Completion Aproved Completion Oct 2024 Oct 2032 Oct 2034 Accelerator **Research & Development** Systems Research & . Science Phase Development Conclusion of Detector Research & Developme **RHIC** operations Infrastructure Design Accelerator Systems Detector Infrastructure Construction & Accelerator Procurement, Fabrication, Installation & Test Installation Systems ы Procurement, Fabrication, Installation & Test Detector Accelerator Commissioning & Pre-Opt Systems Commissioning & Pre-Ops Detector $\frac{21}{21}$ Data Level 0 Critical Key Completed Planned (A) Actual Date Milestones Path

- Still several steps to go, but on target for operation early/mid 30s

LHeC and FCC-eh

LHeC (>50 GeV electron beams) $E_{cms} = 0.2 - 1.3$ TeV, (Q^2 ,x) range far beyond HERA run ep/pp together with the HL-LHC (\gtrsim Run5)

- Recirculating Energy-Recovery Linac (ERL) colliding with LHC (or FCC) hadrons at CERN

- 'Sustainable' acceleration:~100 MW (similar to LHC today)
- Technology development for electron machines or injectors?

FCC-eh (60 GeV electron beams) $E_{cms} = 3.5$ TeV, described in CDR of the FCC run ep/pp together: FCC-hh + FCC-eh

Energy Recovery Linacs

- Demonstrating ERL scalability is critical path
- Prototype (PERLE @ IJCLab / Orsay) implementation started
- First stage (one turn) by 2028.

HV tanks

Electron DC-gun Photo-cathode

Structure of CERN-mandated LHeC / FCC-eh study towards European Strategy

A largely UK-conceived project and still with UK leadership throughout

[Coordinator Jorgen d'Hondt]

Running Scenarios Considered in CDR

- $e^{\pm}p$ 50 GeV x 7 TeV with lepton polarization +0.8 / 0 / -0.8

Parameter	Unit	Run 5 Period	Run 6 Period	Dedicated
Brightness $N_p/(\gamma \epsilon_p)$	$10^{17} { m m}^{-1}$	2.2/2.5	2.2/2.5	2.2/2.5
Electron beam current	${ m mA}$	15	25	50?
Proton β^*	m	0.1	0.7	0.7
Peak luminosity	$10^{34}{ m cm}^{-2}{ m s}^{-1}$	0.5	1.2	2.4
Proton beam lifetime	\mathbf{h}	16.7	16.7	100
Fill duration	\mathbf{h}	11.7	11.7	21
Turnaround time	\mathbf{h}	4	4	3
Overall efficiency	%	54	54	60
Physics time / year	days	160	180	185
Annual integrated lumi.	fb^{-1}	20	50	180

[Pile-up ~0.1]

Running concurrently with pp at HL-LHC:

... integrated lumi of 20 fb-1 per year at Run 5 \rightarrow 50 fb⁻¹ initial dataset ... integrated lumi of 50 fb-1 per year at Run 6 \rightarrow few 100 fb⁻¹ total @ HL-LHC

Running in standalone ep mode:

... integrated lumi of 180 fb-1 per year $\rightarrow 1 \text{ ab}^{-1}$ total target in a few years

- *eA* 50 GeV x 2.76 TeV at 10 fb-1 per year

LHeC Physics Targets and Detector Implications

Standalone Higgs, Top, EW, BSM programme

→ General purpose particle physics detector → Good performance for all high p_T particles → Heavy Flavour tagging

Precision proton PDFs, including very low x parton dynamics in ep,eA → Dedicated DIS exp't → Hermeticity → Hadronic final state resolution for kinematics

- \rightarrow Flavour tagging / PID
- \rightarrow Beamline instruments

Detector Overview (as in 2020 CDR Update)

Compact 13m x 9m (c.f. CMS 21m x 15m, ATLAS 45m x 25m)

<u>Beamline also</u> well instrumented

'Could be built now', but many open questions:

- A snapshot in time, borrowing heavily from (HL)-LHC (particularly ATLAS)
- Possibly lacking components for some ep/eA physics (eg. Particle ID)
- Not particularly well integrated or optimized

... Synergies with EIC, LHCb, ALICE, future lepton colliders still to be e_{x}^{28} lored

Detector technologies build on ¹[®]HC ⁴[®]nd EIC and inform future lepton colliders

<u>e.g. Silicon tracker</u> design in CDR

- HV-CMOS MAPS with bent / stitched wafers (as ALICE and ePIC) and semi-elliptical inner layers to cope with synchrotron fan \rightarrow ~20% X₀ / layer up to η ~4.5

e.g. Forward proton spectrometer in cold region (~420m)?

 Reuse of technology proposed for LHC, accessing protons scattered at very low momentum loss

The FP420 R&D Project: Higgs and New Physics with

29

forward protons at the LHC

LHeC: Revolutionary Proton PDF Precision

e.g. High x Gluon Density

Extends upper mass reach of many LHC BSM searches
 Facilitates LHC precision measurements

 (e.g. M_W → 2 MeV from PDFs, sin²θ → 0.03%)
 → Elucidates novel very low x dynamics

LHeC (SM) Higgs Programme

Yields for 1ab⁻¹ (LHeC), 2ab⁻¹ (FCC-eh) P=-0.8

		Number of Events			
		Charged Current		Neutral Current	
Channel	Fraction	LHeC	FCC-eh	LHeC	FCC-eh
$b\overline{b}$	0.581	114500	1208000	14000	175000
W^+W^-	0.215	42300	447000	5160	64000
gg	0.082	16150	171000	2000	25000
$ au^+ au^-$	0.063	12400	131000	1500	20000
$c\overline{c}$	0.029	5700	60000	700	9000
ZZ	0.026	5100	54000	620	7900
$\gamma\gamma$	0.0023	450	5000	55	700
$Z\gamma$	0.0015	300	3100	35	450
$\mu^+\mu^-$	0.0002	40	410	5	70
$\sigma[{ m pb}]$		0.197	1.04	0.024	0.15

- Dominant production mechanism charged current (WW), easily distinguished from sub-dominant neutral current (ZZ)

e.g. Expected Future Collider sensitivities combined with HL-LHC

Future colliders combined with HL-LHC Uncertainty values on $\Delta \kappa$ in %. Limits on Br (%) at 95% CL.

[JHEP 01 (2020) 139]

A 2040s Bridging Opportunity?

- LHeC is not the next major new collider for CERN
- LHeC could be an impactful final upgrade to LHC ...
 - potentially 'affordable' on required timescale
 - technically realisable for late 2030s
 (ERL technology = critical path)
 - extending energy frontier sensitivity within a few years of running
 - complementing and enabling HL-LHC programme
 - ensuring continuity of collisions and scalar sector exploration in the 2040s
 - exploring SRF, ERL options & detector technologies

... as a testing ground (injector?) for a future major facility

SUMMARY

From the early 2030s: The Electron Ion Collider will transform our understanding of nucleon and nuclear structure, scientifically complementing past / future energy frontier DIS facilities.

From the late 2030s:

The Large Hadron electron Collider offers an achievable bridging project for CERN, with an impactful physics programme, including further empowerment of the LHC and exploration of the scalar sector.

... see following talks from Claire & Monica

"Circles in a circle" Wassily Kandinsky (1923) Philadelphia Museum of Art

Detector Technologies / Challenges

Requirements considered in 2021 ECFA R&D roadmap ... mostly ready to be built ... synergies / stepping-stones towards other future projects

10

Challenges are synchrotron radiation and hermiticity ... access to $Q^2=1$ GeV² for all x requires scattered electrons to 179°

			DRDT	< 2030	2030 035	2055- 2040-2041	>20/
		Position precision	3.1.3.4				
		Low X/X	3.1.3.4				
S	Vertex	Low power	3.1.3.4		-		
		High rates	3.1.3.4				
Ψ	detector ²⁾	Large area wafers ³⁾	3.1,3.4				
U		Ultrafast timing ⁴⁾	3.2				
		Radiation tolerance NIEL	3.3		T i i		
>		Radiation tolerance TID	3.3		• •		ŏ.
d)		Position precision	3.1,3.4	•	•		
Š		Low X/Xo	3.1,3.4	ĕ	ė ě		• • •
		Low power	3.1,3.4	ĕ	ěě		
4.		High rates	3.1,3.4		•		
U,	Trackers	Large area wafers ³⁾	3.1,3.4	•	• •		
Ļ		Ultrafast timing4)	3.2		• •		
B		Radiation tolerance NIEL	3.3		•		
َ ل		Radiation tolerance TID	3.3		•		•
S		Position precision	3.1,3.4				
		Low X/Xo	3.1,3.4				
σ		Low power	3.1,3.4	•	•		
—	Calasimatas)	High rates	3.1,3.4				
	Catorimeter	Large area wafers ³⁾	3.1,3.4	•	•		
0		Ultrafast timing ⁴⁾	3.2				
S		Radiation tolerance NIEL	3.3				
		Radiation tolerance TID	3.3				
		Position precision	3.1,3.4	• •	• •	• •	•
ON		Low X/X _o	3.1,3.4	• •	• •	• •	•
	Time of flight ⁷	Low power	3.1,3.4	• •	• •	•	•
Ð		High rates	3.1,3.4				
-		Large area wafers ³⁾	3.1,3.4		• •	•	
		Ultrafast timing ⁴⁾	3.2	• •	• •	•	•
		Radiation tolerance NIEL	3.3		•		
		Radiation tolerance TID	3.3		•		

Important to meet several physics goals 😑 Desirable to enhance physics reach

LHeC PDFs Empowering LHC

- Theory uncertainty on LHC Higgs production cross section improves dramatically compared with current PDF and α_s knowledge.
- PDF-related systematics on EW measurements are significant (e.g. LHeC enables $\sin^2\theta \rightarrow 0.03\%$ and reduces δ_{PDF} on $M_W \rightarrow 2$ MeV in ATLAS studies)

- Many BSM scenarios ultimately limited by high x PDFs

ep Standalone Higgs Sensitivity

- CC Signal strength uncertainties at 1% level for $H \rightarrow b\overline{b}$, 7% for $H \rightarrow c\overline{c}$...

Including initial-state couplings
 in *K*-framework analysis leads
 to sub-1% *WWH* coupling precision

Electroweak Gauge Bosons

LHeC: σ(H)~ 0.2pb σ(W)~ 3pb σ(Z)~ 2pb σ(t)~ 1pb

... W, Z and (single) top samples ~10⁶ events each

to light quarks tightly constrained from t-channel Z exchange

Example Top Physics at LHeC

[~10⁶ single top events]

<u>CKM</u>

Cut-based simulation in hadronic channel

- \rightarrow 1% V_{tb} precision (now ~5%)
- \rightarrow Improved V_{ts}, V_{tb} constraints

FCNC

Comparable sensitivity to HL-LHC in $t_{\gamma}c$, $t_{\gamma}u$ coupling sensitivities

Double Ring Design Based on Existing RHIC Facilities

Hadron Storage Ring: 40, 100 - 275 GeV	Electron Storage Ring: 5 - 18 GeV			
RHIC Ring and Injector Complex: p to Pb	9 MW Synchrotron Radiation			
1A Beam Current	Large Beam Current - 2.5 A			
10 ns bunch spacing and 1160 bunches				
Light ion beams (p, d, 3 He) polarized (L,T) > 70% Polarized electron beam > 70%				
Nuclear beams: d to U Electron Rapid Cycling Synchrotron				
Requires Strong Cooling: new concept →CEC Spin Transparent Due to High Periodicity				
One High Luminosity Interaction Region(s)				
25 mrad Crossing Angle with Crab Cavities				

Challenges from high lumi requirement include high beam currents and correspondingly short bunch spacings:

- \rightarrow Synchrotron load management
- \rightarrow Significant crossing angle

Crude Mapping Between Physics & Facilities

Inclusive EIC Data Impact on Proton PDFs

EIC nuclear PDFs: high parton densities

- Nuclei enhance density of partons $(\sim A^{1/3} \text{ factor at fixed x, } Q^2)$

- Results usually shown in terms of nuclear modification ratios: change relative to simple scaling of (isospin-corrected) proton

$$f_i^{p/A}(x,Q^2) = R_i^A(x,Q^2)f_i^p(x,Q^2)$$

... poorly known, especially for gluon and at low x

- EIC offers large impact on eA phase space, extending into low-x region where density effects may lead to novel emergent QCD phenomena ('saturation'?)

Impact on Nuclear PDFs

- Nuclear effects in PDFs not fully understood.

- Important e.g. for initial State in QGP studies

Usually expressed in terms of nuclear modification ratio relative to scaled isospin-adjusted nucleons:

$$R = \frac{f_{i/A}}{A f_{i/p}} \approx \frac{1}{\exp(1 - \frac{1}{2})}$$

measured expected if no nuclear effects

Taking α_s as an additional free parameter

Adding EIC (precision high x) data to HERA can lead to α_s precision a factor ~2 better than current world experimental average, and than lattice QCD average

Scale uncertainties remain to be understood (ongoing work)

- HERA data alone (HERAPDF2.0) shows only limited sensitivity when fitting inclusive data only.

- Adding EIC simulated data has a remarkable impact

 $\alpha_s(M_Z^2) = 0.1159 \pm 0.0004 \text{ (exp)}$

 $^{+0.0002}_{-0.0001}$ (model + parameterisation)

Spin: EIC Virtual γ Asymmetry sim'n (A_1^p)

Asymmetries between NC cross sections with different longitudinal and transverse polarisations ...

$$A_{\parallel} = \frac{\sigma^{\leftrightarrows} - \sigma^{\rightrightarrows}}{\sigma^{\leftrightarrows} + \sigma^{\rightrightarrows}} \text{ and } A_{\perp} = \frac{\sigma^{\rightarrow\uparrow} - \sigma^{\rightarrow\downarrow}}{\sigma^{\rightarrow\uparrow} + \sigma^{\rightarrow\downarrow}}$$
$$\rightarrow A_1(x) \approx g_1(x) / F_1(x)$$

... measure the quark and antiquark helicity distributions ...

$$g_1(x) = \sum \left(\Delta q(x) + \Delta \overline{q}(x) \right)$$

... which gives gluon sensitivity from Q² dependence (scaling violations)

Previously measured region (in green)

EIC measures down to x ~ 5 x 10^{-3} for 1 < Q² < 100 GeV²

More Physics Motivation: Proton Spin

- Spin $\frac{1}{2}$ is much more complicated than $\uparrow\uparrow\downarrow$...

- EMC 'spin crisis' (1987) ... quarks only carry about 10% of the nucleon spin

- Viewed at the parton level, complicated mixture of quark, gluon and relative orbital motion, evolving with Q^2 , but always = $\frac{1}{2}$

Jaffe-Manohar sum rule:

Exclusive Processes and Dense Systems

Additional variable (Mandelstam) t is conjugate to transverse spatial distributions

 \rightarrow Large t (small b) probes small impact parameters etc.

48

[arXiv:1211.3048]

Experimental challenges from incoherent background and resolving dips

Proton Mass & Exclusive Vector Mesons

- Recent Jlab data on t dependences of J/Ψ production near threshold \rightarrow Gravitational form factors
- Gluon radius smaller than charge radius
- Interpreted in terms of trace anomaly

Simulated EIC measurement extends the study to Y with much improved precision

r≈84 Central FHC-**Fwd Tracker** BHC-Bwd Plug Plug Tracker Tracker ••••••• 186 154 53 **EMC-Barrel** Solenoid **BEC-Plug FEC-Plug** 23 23

- Finely segmented plugs (W, Pb, Cu) for compact showering, with Si sensors
- 25-50 X_0 and ~10 λ throughout acceptance region

0.05		readout electrode absorber
rage 9°	outer copper layer inner copper layer kapton outer copper layer	Sale as
	stainless steel glue lead	· · · · · · · · · · · · · · · · · · ·
0.01	▶ ₽	

Baseline configuration		η coverage	angular coverage	
EM barrel + small η endcap	LAr	$-2.3 < \eta < 2.8$ $6.6^{\circ} - 168$		
Had barrel+Ecap	Sci-Fe	(~ behind EM barrel)		
EM+Had very forward	Si-W	$2.8 < \eta < 5.5$	0.48° –	
EM+Had very backward	Si-Pb	$-2.3 < \eta < -4.8$	-179.1°	