Christoph Englert

New physics at 10 TeV pcm

ECFA-UK meeting

Durham, 24/09/24

LEVERHULME TRUST_____

Science and Technology Facilities Council

hh vs $\mu\mu$

...not possible to provide a comprehensive overview in 20+x mins \rightarrow dedicated session on Wednesday

Here & now:

- highlight conceptual difference
- isolate common themes
- a qualitative overview of arising opportunities given HL-LHC
- all of this from a theoretical/phenomenological perspective
 - ...no disclaimers on unknown performance differences...

11 --- μμ

10 TeV μμ stage option *roughly* equates to FCC-hh@100 TeV

... process dependent statement!

<u>μμ</u>

3

10 TeV μμ stage option *roughly* equates to FCC-hh@100 TeV

... process dependent statement!

¹¹--- μμ

3

10 TeV µµ stage option roughly equates to FCC-hh@100 TeV

... process dependent statement!

```
μμ@10 TeV
```

<u>μμ</u>

10 TeV μμ stage option *roughly* equates to FCC-hh@100 TeV

... process dependent statement!

pp @ 100µTeV pp

- expand reach to coloured exotics (SUSY...)
- multi-Higgs in WBF and GF
- WBF + multi-boson in many channels
- challenging environment: QCD/pile-up...

μμ@10 TeV

- 2nd generation specific new physics
- a W collider!

β

3

- fine-grained picture of EW/H sector
- unitarisation, Hoff-shellness, ...
- elw. Sudakovs...

 \rightarrow Marek's talk

• naturalness \approx compositeness/SUSY \approx top partners + exotics

• naturalness \approx compositeness/SUSY \approx top partners + exotics

• naturalness \approx compositeness/SUSY \approx top partners + exotics

• we are comparing two highly different concepts

• we are comparing two highly different concepts

trivial to make one look better than the other

easy to accommodate SM-like HL-LHC outcome

we are comparing two highly different concepts

visible in EFT performance patterns trivial to make one look better than the other

easy to accommodate SM-like HL-LHC outcome

• we are comparing two highly different concepts

visible in EFT performance patterns

trivial to make one look better than the other

easy to accommodate SM-like HL-LHC outcome

• areas of synergy with electroweak motivation?

 \rightarrow talks tomorrow

• we are comparing two highly different concepts

visible in EFT performance patterns trivial to make one look better than the other easy to accommodate SM-like HL-LHC outcome

• areas of synergy with electroweak motivation?

BSM EW BSM

 \rightarrow talks tomorrow

 \rightarrow talks tomorrow

• we are comparing two highly different concepts

visible in EFT performance patterns trivial to make one look better than the other
 easy to accommodate SM-like HL-LHC outcome

• areas of synergy with electroweak motivation?

BSM EW BSM (multi-)boson, WBF, (multi-)Higgs,...

 $\phi_{\rm c}$

 $V_{T}(\phi_{e})$

\$e

ø.

Higgs mass

¢.

Higgs mass

¢.

many different channels at hadron machines

sensitivity from sampling processes' energy dependence across a few TeV

- Drell-Yan/WBF scan a wide range of energies at FCC-hh
- pair/triple gauge boson production + EFT + anomalous couplings

sensitivity from sampling processes' energy dependence across a few TeV

- many different channels at hadron machines
 - Drell-Yan/WBF scan a wide range of energies at FCC-hh

0

0.1

pair/triple gauge boson production + EFT + anomalous couplings

0.3

0.2

0.4

0.5

log

WBF WWjj @ FCC	Parameter	\sqrt{s}	Luminosity	pileup	5σ	95% CL
[Degrande et al 1309 7452]		[TeV]	$[\mathrm{fb}^{-1}]$		$[\mathrm{TeV}^{-4}]$	$[\mathrm{TeV}^{-4}]$
	f_{T1}/Λ^4	14	300	50	0.2 (0.4)	0.1 (0.2)
	f_{T1}/Λ^4	14	3000	140	0.1 (0.2)	0.06~(0.1)
	f_{T1}/Λ^4	14	3000	0	0.1 (0.2)	0.06~(0.1)
	f_{T1}/Λ^4	100	1000	40	$0.001 \ (0.001)$	$0.0004 \ (0.0004)$
	f_{T1}/Λ^4	100	3000	263	$0.001 \ (0.001)$	$0.0008 \ (0.0008)$
	f_{T1}/Λ^4	100	3000	0	$0.001 \ (0.001)$	$0.0008 \ (0.0008)$

0.6 sensitivity from sampling processes' energy dependence across a few TeV

- many different channels at hadron machines
 - Drell-Yan/WBF scan a wide range of energies at FCC-hh
 - pair/triple gauge boson production + EFT + anomalous couplings

0.3

0.2

0.1

0.4

0.5

log

WBF WW	'jj @ FCC	Parameter	\sqrt{s}	Luminosity	pileup	5σ	95% CL
[Degrande et al. 1309.7452]		[TeV]	$[fb^{-1}]$		$[\mathrm{TeV}^{-4}]$	$[\mathrm{TeV}^{-4}]$	
[0		f_{T1}/Λ^4	14	300	50	0.2(0.4)	0.1 (0.2)
		f_{T1}/Λ^4	14	3000	140	0.1 (0.2)	0.06(0.1)
		f_{T1}/Λ^4	14	3000	0	$0.1 \ (0.2)$	0.06 (0.1)
		f_{T1}/Λ^4	100	1000	40	$0.001 \ (0.001)$	$0.0004 \ (0.0004)$
		f_{T1}/Λ^4	100	3000	263	$0.001 \ (0.001)$	$0.0008 \ (0.0008)$
		f_{T1}/Λ^4	100	3000	0	$0.001 \ (0.001)$	0.0008 (0.0008)
GeV^{-4}	N_{J-4} No form factor			$\Lambda = 1 \mathrm{T}$	eV, n=2		
	lower limi	t upper l	imit	lower limit	uppe	r limit	WWW
$\frac{f_{S0}}{\Lambda^4}$	-4.56×10^{-1}	$-10 4.58 \times 1$	0^{-10}	-3.08×10^{-9}	3.39 >	$\times 10^{-9}$	@ FCC
$\frac{\bar{f}_{S1}}{\Lambda^4}$	-9.46×10^{-1}	$^{-10}$ 9.85 × 1	0^{-10}	-4.00×10^{-9}	5.26 >	$\times 10^{-9}$ [We	en et al 1407 49221
$\frac{\hat{f}_{T0}}{\Lambda 4}$	-2.80×10^{-1}	$^{-12}$ 2.70 × 1	0^{-12}	-7.60×10^{-11}	6.00 ×	$< 10^{-11}$	12

sensitivity from sampling processes' energy dependence across a few TeV

- many different channels at hadron machines
 - Drell-Yan/WBF scan a wide range of energies at FCC-hh

0

0.1

pair/triple gauge boson production + EFT + anomalous couplings

0.3

0.4

0.5

log

0.2

LHC dim 6 context [Celada et al. 2407.09600]

M AT

WBF WW	ji @ FCC	Parameter	\sqrt{S}	Luminosity	pileup	$ 5\sigma$	95% CL
[Degrande et	al 1309 7452]		[TeV]	$[fb^{-1}]$		$[\mathrm{TeV}^{-4}]$	$[\mathrm{TeV}^{-4}]$
		f_{T1}/Λ^4	14	300	50	0.2(0.4)	0.1 (0.2)
		f_{T1}/Λ^4	14	3000	140	$0.1 \ (0.2)$	0.06(0.1)
		f_{T1}/Λ^4	14	3000	0	0.1 (0.2)	0.06(0.1)
		f_{T1}/Λ^4	100	1000	40	$0.001 \ (0.001$) 0.0004 (0.0004)
		f_{T1}/Λ^4	100	3000	263	0.001 (0.001	.) 0.0008 (0.0008)
		f_{T1}/Λ^4	100	3000	0	0.001 (0.001) 0.0008 (0.0008)
$C \circ V^{-4}$	No fe	orm factor		$\Lambda = 1 \mathrm{T}$	eV, n=2		
Gev	lower limi	t upper l	imit	lower limit	uppe	r limit	WWW
$rac{f_{S0}}{\Lambda^4}$	-4.56×10^{-1}	$-10 4.58 \times 1$	0^{-10}	-3.08×10^{-9}	3.39 >	$\times 10^{-9}$	@ FCC
$rac{f_{S1}}{\Lambda^4}$	-9.46×10^{-1}	$^{-10}$ 9.85 × 1	0^{-10}	-4.00×10^{-9}	5.26 >	$\times 10^{-9}$	Wen et al. 1407.4922]
$rac{f_{T0}}{\Lambda^4}$	-2.80×10^{-1}	$^{-12}$ 2.70 × 1	0^{-12}	-7.60×10^{-11}	6.00 ×	$< 10^{-11}$	13

sensitivity from sampling processes' energy dependence across a few TeV

- many different channels at hadron machines
 - Drell-Yan/WBF scan a wide range of energies at FCC-hh

0

0.1

pair/triple gauge boson production + EFT + anomalous couplings

0.3

0.2

0.4

0.5

log

WBF WWjj @ FCC	Parameter	\sqrt{s}	Luminosity	pileup	5σ	95% CL	
[Degrande et al. 1309.7452]		[TeV]	$[fb^{-1}]$		$[\mathrm{TeV}^{-4}]$	$[\mathrm{TeV}^{-4}]$	
[0]	f_{T1}/Λ^4	14	300	50	0.2~(0.4)	0.1 (0.2)	
	f_{T1}/Λ^4	14	3000	140	0.1 (0.2)	0.06(0.1)	
	f_{T1}/Λ^4	14	3000	0	0.1 (0.2)	0.06(0.1)	
	f_{T1}/Λ^4	100	1000	40	$0.001\ (0.001)$	$0.0004 \ (0.0004)$	
	f_{T1}/Λ^4	100	3000	263	$0.001 \ (0.001)$	0.0008 (0.0008)	
	f_{T1}/Λ^4	100	3000	0	$0.001 \ (0.001)$	$0.0008 \ (0.0008)$	
$C_0 V^{-4}$ No :	form factor		$\Lambda = 1 \mathrm{T}$	eV, n=2			
lower lim	it upper l	imit	lower limit	uppe	r limit	WWW	
$\frac{f_{S0}}{\Lambda^4}$ -4.56 × 10	$^{-10}$ 4.58 × 1	0^{-10}	-3.08×10^{-9}	3.39 >	$\times 10^{-9}$	@ FCC	
$\frac{f_{S1}}{\Lambda^4} - 9.46 \times 10$	$^{-10}$ 9.85 × 1	0^{-10}	-4.00×10^{-9}	5.26 >	$\times 10^{-9}$ [W	en et al. 1407.4922]	
$\frac{f_{T0}}{\Lambda^4} \mid -2.80 \times 10$	$^{-12}$ 2.70 × 1	0^{-12}	-7.60×10^{-11}	6.00 ×	$< 10^{-11}$	13	

 µµ@10 TeV efficiently collides Ws above the weak threshold

WBF @ *µµ*

$WW \nu \nu$	$\sqrt{s} = 6$	TeV	$\sqrt{s} = 10 \text{ TeV}$		
	Limit	Unitarity	Limit	Unitarity	
	(TeV^{-4})	Bound (TeV)	(TeV^{-4})	Bound (TeV)	
$f_{ m S,0}/\Lambda^4$	[-0.19, 0.18]	[3.8, 4.4]	[-0.034, 0.033]	[5.8, 6.8]	
$f_{{ m S},1}/\Lambda^4$	[-0.11, 0.11]	[4.5, 4.3]	[-0.019, 0.019]	[6.8, 6.6]	
$f_{\mathrm{T},0}/\Lambda^4$	[-0.0049, 0.0025]	[6.2, 6.3]	[-0.00070, 0.00051]	[10.0, 9.3] .	
$f_{{ m T},1}/\Lambda^4$	[-0.0017, 0.0014]	[7.7, 8.1]	$\left[-0.00089, 0.00053 ight]$	[9.0, 10.3]	
$f_{{ m T},2}/\Lambda^4$	[-0.011, 0.0046]	[6.6, 7.0]	$\left[-0.0015, 0.00082\right]$	[10.8, 10.7]	

[Abbott et al. 2203.08135]

- μμ@10 TeV provides high sensitivity at high energy
 - unitarity is woven into any analysis
 - "great measurement under the following assumptions"

- μμ@10 TeV provides high sensitivity at high energy
 - unitarity is woven into any analysis
 - "great measurement under the following assumptions" $\sqrt{s} \gtrsim 1-5 \text{ TeV}$

- μμ@10 TeV provides high sensitivity at high energy
 - unitarity is woven into any analysis
 - "great measurement under the following assumptions" $\sqrt{s} \gtrsim 1-5 \text{ TeV}$

- μμ@10 TeV provides high sensitivity at high energy
 - unitarity is woven into any analysis
 - "great measurement under the following assumptions" $\sqrt{s} \gtrsim 1-5 \text{ TeV}$

probed high above threshold

- μμ@10 TeV provides high sensitivity at high energy
 - unitarity is woven into any analysis
 - "great measurement under the following assumptions" $\sqrt{s} \gtrsim 1-5 \text{ TeV}$

- $\mu\mu@10$ TeV provides high sensitivity at high energy
 - unitarity is woven into any analysis
 - "great measurement under the following assumptions" $\sqrt{s} \gtrsim 1-5 \text{ TeV}$

 constraints that violate unitarity have no meaning in a perturbative analysis chain

probed high above threshold

[[]CE, Spannowsky 1405.0285]

Summary

► FCC-hh and µµ@10TeV: formidable avenues for BSM exploration

► FCC-hh and µµ@10TeV: formidable avenues for BSM exploration

- each concept has its unique strengths and weaknesses
- physics case is equally compelling and *synergetically* strong

Summary

• FCC-hh and $\mu\mu@10$ TeV: formidable avenues for BSM exploration

- each concept has its unique strengths and weaknesses
- physics case is equally compelling and *synergetically* strong

Summary

• FCC-hh and $\mu\mu@10$ TeV: formidable avenues for BSM exploration

- each concept has its unique strengths and weaknesses
- physics case is equally compelling and *synergetically* strong

FCC-hh and µµ@10TeV: formidable avenues for BSM exploration

- each concept has its unique strengths and weaknesses
- physics case is equally compelling and *synergetically* strong

...we learn something entirely new!