

LHC Exploitation: Higgs Physics

Nicholas Wardle

ECFA-UK Meeting on UK studies for the European Strategy Particle Physics Update

23-26 September 2024

Euro PP strategy - 2020

"The successful completion of the high-luminosity upgrade of the machine and detectors should remain the focal point of European particle physics, together with continued innovation in experimental techniques.

The full physics potential of the LHC and the HL-LHC, including the study of flavour physics and the quark-gluon plasma, should be exploited."

Euro PP strategy - 2020

"The successful completion of the high-luminosity upgrade of the machine and detectors should remain the focal point of European particle physics, together with continued innovation in experimental techniques.

The full physics potential of the LHC and the HL-LHC, including the study of flavour physics and the quark-gluon plasma, should be exploited."

2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037	2038	2039	2040	2041
TEMAMUTUASIOND TE		ANDUKSONDU	FMAMJJASONO	JFMAMJJASC	NOJEMAMJJAS	Run 4	ONDJEMAMJJASON	O J FMAMJ J ASON		DJ FMAMJJA SIDNI	DJFMAMJJASON	DJFMAMJJASONC	JFMAMJJASON	LS5	FMAMJJASON Ri	UDIFMAND JASONO
	Long S	inititio wii 5 ((33)					1					,	\mathbf{r}		
> 450/fb f	from LHC						+ 600/fb fr	om HL-L	HC			+ 110	00/fb from	n HL-LHO		+ 800/fb fi

Expect > 160M H-bosons / 120k HH pairs per GP experiment by the end of the HL-LHC !

Why Higgs @ HL-LHC?

In O(10) years since the discovery, LHC has provided us with a lot of information about the Higgs boson

Why Higgs @ HL-LHC?

In O(10) years since the discovery, LHC has provided us with a lot of information about the Higgs boson

Open questions about the Higgs boson

- Is the Higgs sector SM-like ? → Do all the SM particles lie on that line?
- Is the Higgs elementary or composite?

Why Higgs @ HL-LHC?

In O(10) years since the discovery, LHC has provided us with a lot of information about the Higgs boson

Open questions about the Higgs boson

- Is the Higgs sector SM-like ? → Do all the SM particles lie on that line?
- Is the Higgs elementary or composite?

Open questions that the Higgs impacts

- Is the Higgs a portal to a Hidden sector?
- Is electroweak baryogenesis viable (stability?, 1st order PT?)

Higgs boson Mass

Higgs boson mass measured in high-resolution final states $H \rightarrow 4I \& H \rightarrow \gamma\gamma$

Resolution and scale of lepton/photon momentum measurements will dominate sensitivity to m_H*

ATLAS H→4I

	$\Delta_{\rm tot}$ (MeV)	Δ_{stat} (MeV)	Δ_{syst} (MeV)
Current Detector	52	39	35
μ momentum resolution improvement by 30% or similar	47	30	37
μ momentum resolution/scale improvement of 30% / 50%	38	30	24
μ momentum resolution/scale improvement 30% / 80%	33	30	14

Combination of H \rightarrow 4l & H \rightarrow $\gamma\gamma$ channels with both experiments could yield $\delta(M_H) \sim 20$ MeV uncertainty at HL-LHC!

* interference effects can lead to shift of 35 MeV in $H \rightarrow \gamma \gamma$

<u>Higgs boson couplings</u>

Expect to reach O(%)-level precision in many Higgs boson couplings → likely to be the best measurement for many years beyond HL-LHC in some cases

Assumes trigger & detector performance / reconstruction similar to performance of detectors during Run-2

Uncertainty scaling:

Statistical Uncertainties	$\propto 1/\sqrt{L}$
Experimental Uncertainties	$\propto 1/\sqrt{L}$ Until floor reached
Theoretical Uncertainties	x 0.5

Uncertainty dominated by systematic components in many cases for coupling (inclusive) measurements

Caveat! Higgs boson couplings based on partial Run-2 data -Represents only ~few % of total expected HL-LHC dataset

Higgs boson 2nd generation couplings

Updates in 2022 (Snowmass) for key decay channels where projections now use analyses based only **full Run-2 datasets & improved analysis methods**

Reminder that projections are often pessimistic as analysis strategies improve with each iteration

b/c

Higgs boson 2nd generation couplings

LHCb offers unique opportunity to study Higgs decays in forward region

Excellent flavor tagging at LHCb \rightarrow Current sensitivity $k_b < 7$, $k_c < 80$ with 2 fb⁻¹

By end of HL-LHC, could expect improvements from

- Luminosity scaling to 300 fb⁻¹
- Improved jet-tagging efficiency
- Improved discrimination between b- & c-quarks with ML (similar to CMS and ATLAS)

\rightarrow Expected sensitivity to $\kappa_c \sim 2$ at HL-LHC*!

* D. Zuliani @ ICHEP 2024

Nicholas Wardle

Off-shell Higgs boson couplings & Width

LHC has access to **off-shell Higgs boson processes** → Can measure couplings away from the Higgs pole mass

<u>Off-shell Higgs boson couplings & Width</u>

LHC has access to **off-shell Higgs boson processes** → Can measure couplings away from the Higgs pole mass

Direct measurement of **Higgs boson width** from line-shape severely limited by peak resolution

 Γ_{H} measurements @ HL-LHC will be driven by **off/on-shell coupling combinations**

<u>H→invisible</u>

Searches for H + p_T^{miss} provide direct constraints on Higgs boson invisible width $q_{q_{miss}}$

Sensitivity dominated by VBF production

- \rightarrow forward tracking & calorimetry vital @HL-LHC
- $\rightarrow p_T^{miss}$ needs to be under control (challenge at high PU)

<u>H→invisible</u>

Sensitivity dominated by VBF production

- ightarrow forward tracking & calorimetry vital @HL-LHC
- \rightarrow p_T^{miss} needs to be under control (challenge at high PU)

Measurements of B(H→inv) provide complementary constrains to direct detectors for DM models

Searches for HH

Double Higgs production extremely rare process in SM due to interference

Sensitivity strongly depends on Higgs boson self-coupling

Channel	Signific	cance	95% CL limit on $\sigma_{\rm HH}/\sigma_{\rm HH}^{\rm SM}$		
Charmer	Stat. + syst.	Stat. only	Stat. + syst.	Stat. only	
bbbb	0.95	1.2	2.1	1.6	
bb au au	1.4	1.6	1.4	1.3	
$bbWW(\ell \nu \ell \nu)$	0.56	0.59	3.5	3.3	
$bb\gamma\gamma$	1.8	1.8	1.1	1.1	
$bbZZ(\ell\ell\ell\ell)$	0.37	0.37	6.6	6.5	
Combination	2.6	2.8	0.77	0.71	

Combination of 5 channels yields ~2.6 σ significance \rightarrow ~4 σ with ATLAS combination assuming κ_{λ}

Higgs boson self-coupling

Understanding the **Higgs boson potential** a crucial goal of the electroweak physics programme at the LHC

Higgs boson self-coupling

Understanding the **Higgs boson potential** a crucial goal of the electroweak physics programme at the LHC

New projections from ATLAS much more encouraging \rightarrow Could reach 5 σ HH discovery (~3.2 σ baseline)

Uncertainty scenario	<i>κ</i> _λ 68% CI	κ _λ 95% CI	_
No syst. unc.	[0.7, 1.4]	[0.3, 1.9]	ATL
Baseline	[0.5, 1.6]	[0.0, 2.5]	AS
Theoretical unc. halved	[0.3, 2.2]	[-0.3, 5.5]	3 al
Run 2 syst. unc.	[0.1, 2.4]	[-0.6, 5.6]	0

 \rightarrow Uncertainty in $\kappa_{\lambda} \sim 20\%$ with LHC combination!

* Very recent update from ATLAS in this channel -> similar sensitivity to HH in single channel! <u>ATL-PHYS-PUB-2024-016</u> + See Jay's talk yesterday

Nicholas Wardle

Higgs and the Universe

Modified Higgs potentials can result in 1st order electroweak phase transition

\rightarrow required for baryogenesis

- Strong first order PT (electroweak baryogenesis viable)
- Could be detected at GW detectors (eLISA)

On-shell

Inclusive κ/μ : high-precision yields pro

ecision on new physics scale
$$\delta_{\mu} = 1\% \rightarrow \Lambda \sim 2.5 \text{ TeV}$$

 $\delta_{\sigma} = 15\% (q=1 \text{TeV}) \rightarrow \Lambda \sim 2.5 \text{ TeV}$

Differential measurements of Higgs boson production provide more granular information as more data available \rightarrow factorize theory uncertainties and allow to probe scenarios where **BSM physics enhances tails of distributions**

Differential Higgs boson measurements also expected to yield sensitivity to Higgs boson self-coupling \rightarrow combine with HH searches for ultimate sensitivity to κ_{λ}

Η

LOODOG

Kinematic measurements provide Additional constraints on b/c-H coupling!

Measurements of differential Higgs boson production now more commonly interpreted under effective field theories (e.g <u>CMS-PAS-HIG-23-013</u>, <u>ATLAS-HIGG-2022-17</u>) \rightarrow likely to be a legacy of the (HL)LHC

BSM Higgs

Searches for extended Higgs sectors and BSM Higgs boson decays limited at HL-LHC due to

Requirement for statistics ($H \rightarrow BSM$ rare processes) or energy (BSM Higgs)

 $\pm 1\sigma$

 $+2\sigma$

h(125) rates

500

1000

50

40

20

10

 $\tan egin{array}{c} 1 \\ 30 \\ 30 \end{array}$

10-1

Likely that limits set by HL-LHC will remain **most stringent until future hh** (or other high energy) collider

Exploting all of the data

Current projections don't account for **new methods** to constrain Higgs boson properties \rightarrow More data can bring more than just \sqrt{L} improvements

New ideas even with Run-2 data!

Understanding our data

Precision measurements require more than just more data
→ Improvements in reconstruction techniques & calibrations
will be needed for few % precision couplings @HL-LHC

CMS

1.4

1.2 ي 1.0

0.8 E

Ŵ

1.05

95

10 yrs

~ 25yrs?

.05

1 95

0 yrs

Nicholas Wardle

26

Summary

We are still early (in terms of data taken) of the LHC era

• Expect > 160M H-bosons / 120k HH pairs at CMS by the end of the HL-LHC !

Extremely broad programme for Higgs physics explored during Run-1/2 and now ongoing in Run-3

• Since discovery, Higgs boson mass, width, couplings, cross-sections, BSM-Higgs

Projections of current analyses show

- 20 MeV in m_H and strong constraints on total width
- O(%) uncertainty in many Higgs boson couplings → several will be long-lasting legacy of the (HL-)LHC
- Likely first observation (5σ) of 2^{nd} generation couplings and pushing sensitivity in rare/invisible decays
- Possibility to reach observation of di-Higgs production and < 50% uncertainty in the self-coupling

Projections are always out of date!

- New analyses/methods emerging even now with Run-2/3 data
- We usually get smarter with each iteration of the analyses
 - \rightarrow Expect HL-LHC Higgs legacy to be better than we expect now!

Backup

Muons - Upgrades

<u>CP in H→ττ</u>

Rare decays

	Expected branching ratio limit at 95% CL						
	$\mathcal{B}(H)$	$\rightarrow J/\psi\gamma)$ [10^{-6}]	$\mathcal{B}\left(Z\to J/\psi\gamma\right)\left[\ 10^{-7}\ \right]$				
	Cut Based	Multivariate Analysis	Cut Based				
$300{\rm fb}^{-1}$	185^{+81}_{-52}	153^{+69}_{-43}	$7.0^{+2.7}_{-2.0}$				
3000fb^{-1}	55^{+24}_{-15}	44^{+19}_{-12}	$4.4^{+1.9}_{-1.1}$				
		Standard Model exp	pectation				
	$\mathcal{B}(H)$	$\rightarrow J/\psi\gamma)$ [10 ⁻⁶]	$\mathcal{B}\left(Z\to J/\psi\gamma\right)\left[\ 10^{-7}\ \right]$				
		2.9 ± 0.2	0.80 ± 0.05				

Projection assumes

- Similar lepton and the photon reconstruction as in Run1
- Background distribution understood at ~5% level

Rare decays

Beyond SM physics can lead to large modifications of 1st generation quark Yukawas \rightarrow possible enhancement in H \rightarrow ZQ/QQ compared to SM

Projection of Run-2 search for $H \rightarrow Z J/\psi \rightarrow 4\mu$ and $H \rightarrow YY \rightarrow 4\mu$

Analysis still very statistics limited at HL-LHC \rightarrow 3 events in H \rightarrow YY Higgs peak would constitute discovery!

Channel	3000 fb^{-1}	(×SM)	4500 fb^{-1}	(×SM)
$H \to ZJ/\psi$	$2.9 imes 10^{-4}$	(126)	$2.7 imes 10^{-4}$	(117)
$H \to Y(mS)Y(nS)$	$1.3 imes 10^{-5}$	(0.2)	$8.5 imes 10^{-6}$	(0.14)

Nicholas Wardle

Kinematic measurements provide Additional

ATLAS+CMS differential combination

<u>CMS H \rightarrow 4l mass measurement</u>

CMS H→4I	Mass	s unce	ertainty	v (MeV)	Width upper limit at 95 % CL (MeV)	
	Combined	4μ	4e	$2e2\mu$	2µ2e	Combined
Stat. uncertainty	22	28	83	51	59	94
Syst. uncertainty	20	15	189	94	95	150
Total	30	32	206	107	112	177

Direct measurement of Higgs boson width from line-shape severely limited by peak resolution

 $\Gamma_{\rm H}$ measurements @ HL-LHC will be driven by off/on-shell coupling measurements

Legacy of the HL-LHC - couplings

Factors of improvement (reduction in uncertainty) when combining different options with the HL-LHC

LHeC brings most improvement in κ_W but comparable to FCC₂₄₀₊₃₆₅

Remember, main gain in FCC₂₄₀ run is through direct interpretation of couplings

Factors of 10 improvement not seen in many cases until full FCC programme

HL-LHC will remain dominant in some cases throughout (low-

energy) lepton collider era

Remember these studies are out of date as we do have LHC constraints on κ_c

ATLAS HH discovery potential

ATL-PHYS-PUB-2022-053

<u>Updated HH \rightarrow bb $\tau\tau$ </u>

ATL-PHYS-PUB-2024-016

Higgs potential and electroweak baryogenesis

Perhaps one interesting coupling already has a sensible goal post

 $V(H) = \frac{\mu^2}{2}(v+H)^2 + \frac{\lambda}{4}(v+H)^4 + \frac{\lambda_6}{\Lambda}(v+H)^6$ SM BSM

Inclusion of **Dimension-6 (BSM)** term in potential **changes the relationships between** the fundamental Higgs **parameters**

$$\kappa_{\lambda} = \frac{\lambda}{\lambda_{SM}} = 1 + \frac{16\lambda_6 v^4}{m_H^2 \Lambda^2}$$

50% increase in self-coupling could hint at mechanism for 1st order EWK phase-transition accuracy

Self-coupling from single-H differential

Allow overall rate to float freely \rightarrow still constrain selfcoupling through shape information only

Non-SM sensitivity to HH

Sensitivity to HH dramatically varies depending on what we assume about the SM-like and BSM couplings!

Extractions on sensitivity to HH (and self-coupling) @HL-LHC should be studied also **not** assuming SM

cc and bb differential cross-sections

D. Zuliani @ ICHEP 2024

- The main idea is to study the inclusive decay of high mass resonances decaying to $b\bar{b}$ and $c\bar{c}$ di-jets
- It is possible to study lower invariant masses with respect to ATLAS/CMS
- A first study has been performed to measure $b\bar{b}$ and $c\bar{c}$ differential cross sections with 2016 data
- Fit to combination of two MVA discriminators t_0 and t_1 to get flavour composition:

 $t_0 = \mathsf{BDT}_{bc|q}(j_0) + \mathsf{BDT}_{bc|q}(j_1)$ $t_1 = \mathsf{BDT}_{b|c}(j_0) + \mathsf{BDT}_{b|c}(j_1)$

- The cross section ratios $R = \sigma_{b\bar{b}}/\sigma_{c\bar{c}}$ are also computed as functions of kinematic variables
- Results are compatible with expectations
- First measurement of $c\bar{c}$ di-jet differential cross section at a hadron collider

<u>HL-LHC H \rightarrow LLPs</u>

$H \rightarrow LFV @ HL-LHC$

Projections of searches for lepton-flavour violating Higgs boson decays at ATLAS

Alternative assumption how MC statistical uncertainties are expected to scale is shown

ATL-PHYS-PUB-2022-054

eτ_u

ATLAS Upgrade for HL-LHC

Upgraded Trigger and Data Acquisition system

High Granularity Timing

Level-0 Trigger at 1 MHz Improved High-Level Trigger (150 kHz full scan tracking)

Electronics Upgrades

LAr Calorimeter, Tile Calorimeter, Muon System

New Muon Chambers

Inner barrel region with new **RPC and sMDT detectors**

Additional small upgrades

Luminosity detectors (1% precision goal) HL-ZDC

New Inner Tracking Detector (ITK)

All silicon, up to $|\eta|=4$

CMS Upgrades

L1-Trigger HLT/DAQ

https://cds.cern.ch/record/2714892 https://cds.cern.ch/record/2759072

- Tracks in L1-Trigger at 40 MHz
- PFlow selection 750 kHz L1 output
- HLT output 7.5 kHz
- 40 MHz data scouting

https://cds.cern.ch/record/2283187

- ECAL crystal granularity readout at 40 MHz with precise timing for e/γ at 30 GeV
- ECAL and HCAL new Back-End boards

Muon systems

https://cds.cern.ch/record/2283189

- DT & CSC new FE/BE readout
- RPC back-end electronics
- New GEM/RPC 1.6 < η < 2.4
- Extended coverage to $\eta \simeq 3$

Beam Radiation Instr. and Luminosity http://cds.cern.ch/record/2759074

Bunch-by-bunch luminosity measurement: 1% offline, 2% online

CMS

The Phase-2 Upgrade of the CMS Barrel Calorimeters

MS

CERN European Organization for Nuclear Research consultation of the art of th

CMS

The Phase-2 Upgrade of the CMS Endcap Calorimeter Technical Design Report

Tracker https://cds.cern.ch/record/2272264

• Si-Strip and Pixels increased granularity

https://cds.cern.ch/record/2293646

• 3D showers and precise timing

• Si, Scint+SiPM in Pb/W-SS

- Design for tracking in L1-Trigger
- Extended coverage to $\eta\simeq 3.8$

Calorimeter Endcap

MIP Timing Detector

https://cds.cern.ch/record/2667167

Precision timing with:

- Barrel layer: Crystals + SiPMs
- Endcap layer: Low Gain Avalanche Diodes

