Quark Flavour Physics

26.09.2024

Dan Johnson

...

BIRMING

A word of introduction

Flavour physics:

- Quantum numbers of elementary particles: I, C, S, T, B'...
- Global symmetry of strong interactions; broken in electroweak

Open questions:

- Why are there 3 generations of quarks? Do they mirror leptons?
- Why do they have such specific masses and mixing angles?
- What explains the level of CP violation?

At the (HL-)LHC

- Focus on heavy flavour: big themes CP violation and rare decays
- Complements direct searches for New Physics at energy frontier
- Indirect searches at high precision probe higher energy scales

A flavour programme at the LHC

A flavour programme at the LHC

Major UK presence. Take LHCb:

- 11 institutes 200 authors (15% of total)
 - 50 seniors, 70 PDRAs, 70 PhD, 30 eng. + tech.
- Presence in leadership roles from management to physics to operations to detector projects
- Backing of UKRI infrastructure fund: ~ £50M for LHCb at HL-LHC

LHCb: From Upgrade 1 to Upgrade 2

- Run 3 harvest proceeding at pace. UT and third GPU included
- Designed to accumulate 50 fb⁻¹; will do by Run 4
- U2 targets 300 fb⁻¹- after 6 years, LHCb reaches LHC limits at P8

Physics opportunities for flavour at HL-LHC

A whistlestop tour of Schipol flavour physics

Comprehensive review: 'Physics Case for an LHCb Upgrade 2'

HL-LHC physics case is unique on many meaningful timescales:

- LHCb: wide range of results at better precision than any current or foreseen project
- ATLAS and CMS: competitive in a number of key areas

Unitarity Triangles

Express unitarity of CKM matrix; New Physics can break them open A loosely over-constrained picture before the LHC:

Changes driven by

- Tree-level constraints $(\gamma, |V_{ub}|)$
- Loop-level constraints ($sin(2\beta), \Delta m_d, \Delta m_s$)

Unitarity Triangles

Express unitarity of CKM matrix; New Physics can break them open Dramatic increase in precision up to latest CKMfitter averages:

Changes driven by

- Tree-level constraints (γ, |V_{ub}|)
- Loop-level constraints ($sin(2\beta), \Delta m_d, \Delta m_s$)

Unitarity Triangles

Express unitarity of CKM matrix; New Physics can break them open

Room for non-unitarity will shrink radically by Run 6:

Changes driven by

- Tree-level constraints (γ, |V_{ub}|)
- Loop-level constraints ($sin(2\beta), \Delta m_d, \Delta m_s$)

Unitarity triangle: angle γ

- Time-integrated measurement of $B^- \rightarrow DK^-$ decays; direct CPV
- Tree-level process; QCD controlled by data

Relies on external inputs to control QCD in charm

Unitarity triangle: angle γ

• One decay dominates at Belle II; multiplicity of modes at LHCb

- Compare modes: valuable cross-check and tree-level NP probe
- Systematic uncertainties comparable to statistical
- Today: 2.8° precision (0.7° since 2022!)
- Ensemble reaches 1° at end of U1
- Individual modes reach 1° at end of U2

Unitarity triangle: sides

• Historical tension incl. vs excl. $V_{\{u,c\}b}$ diminished

- Crucial inputs from lattice QCD; complementary role for Belle II
- LHCb uses $\Lambda_b \rightarrow p\mu^- \overline{\nu_{\mu}}$ and $B^0_s \rightarrow K^- \mu \nu_{\mu}$
 - Unparalleled samples of Λ_b and B_c^0 will be available at the HL-LHC

• $|V_{ub}|/|V_{cb}|$ reaches 1% precision at HL-LHC

Indirect CPV: in B mixing

- NP can enhance CPV in B mixing; very small in SM
- Theoretically clean null test
- Measure in abundant semileptonic decays (no CPV in decay)

$$A_{\rm sl}^q(t) \equiv \frac{N - \bar{N}}{N + \bar{N}} = \frac{a_{\rm sl}^q}{2} - \left[a_p + \frac{a_{\rm sl}^q}{2}\right] \cdot \left[\frac{\cos \Delta M_q t}{\cosh \Delta \Gamma_q t/2}\right]$$

Can control effects of (very different) B⁰ and B⁰_c mixing

• a_{SL}^d (a_{SL}^s) precision from 0.2 (0.3) % now to 0.02 (0.03) % at HL-LHC

Indirect CPV: interference of *B* mixing and decay

• Flagship $B_s^0 \rightarrow \mathcal{Y}\psi\phi$: expect SM phase very small (~ -40 mrad)

- Powerful probe $B_c^0 \rightarrow \phi \phi$: sensitivity now nearing 100 mrad
- U-spin relates $B_s^0 \to D_s^+ D_s^- \& B^0 \to D^+ D^-$: extra tests
- $\sigma(\phi_s)$ from $B_s^0 \rightarrow \not{\!\!\!\!/} \psi \phi$ at 23 mrad (LHCb), 24 mrad (CMS), 42 mrad (ATLAS)
- Reach 3 mrad sensitivity at HL-LHC

Direct CP violation in charm

- Complementary physics to phenomena of down-type guarks
- Dir. CPV in decay observed in 2019; analysis of 70M $D^0 \rightarrow K^+ K^-, \pi^+ \pi^-$ decays

$$-\Delta A_{CP} = A_{CP}(KK) - A_{CP}(\pi\pi)$$

• Is $\Delta A_{CP} = -15 \pm 3 \times 10^{-4}$ compatible with SM?

- Beginning to separate KK and $\pi\pi$ contributions: few $\times 10^{-4}$
- At end of Run 4 asymmetries reach 10^{-4}
- Only LHCb @ 300 fb^{-1} will reach 10^{-5} precision to understand if NP is at play here

Indirect CP violation in charm

- HL-LHC the only chance to probe at SM level $(10^{-4} 10^{-3})$
- Diverse probes. External inputs from BES-III important
 - DCS $D^0 \rightarrow K^+ \pi^-$ and $D^0 \rightarrow K^+ \pi^- \pi^+ \pi^-$ decays
 - $D^0 \rightarrow K_{s}^0 \pi^+ \pi^-$ decays via 'bin-flip' analysis: TD Dalitz
 - CS $D^0 \rightarrow K^+ K^-$, $\pi^+ \pi^-$ decays: billions at U2
- Evolution in the $D \rightarrow K\pi$ system:

• U2 precision across modes reaches down to $\sigma(|q/p|) \sim 0.002$ and $\sigma(\phi_D) \sim 0.1^{\circ}$

Rare beauty

- $B_s^0 \rightarrow \mu^+ \mu^-$ loop- & helicity-suppressed. B^0 smaller by $\frac{|V_{td}|^2}{|V_{ts}|^2}$
- Observed by ATLAS, CMS, and LHCb. Powerful test of MFV

- At HL-LHC all experiments expect B_s^0 BF at 2-5% level
- Expect SM prediction to improve with further lattice QCD advances

Rare beauty

- ATLAS, CMS, and LHCb all measure effective lifetime
 - complementary constraint: roles played by new scalars/pseudoscalars
- SM: heavy eigenstate $\rightarrow \mu^+ \mu^-$; NP perturbs relationship to $\tau_{B_1^0}$

- For LHCb, HL-LHC reduces uncertainty on lifetime from 10% (now) to 2%
- 100 tagged $B_s^0 \rightarrow \mu^+ \mu^-$ decays \Rightarrow CP asymmetry measurement

Dan Johnson

$b \rightarrow s \ell^+ \ell^-$

- FCNC suppressed in the SM. but wealth of NP openings
- Charm CPV reminds us: progress to discovery can follow a winding path

 Allowed NP contributions at O(1) in coupling to (axial)vector decay motivates greater precision

$b \rightarrow s \ell^+ \ell^-$

- Tensions in observables dependent upon Wilson Coefficients of NP had neared 3σ in $B^0 \rightarrow K^* \mu^+ \mu^-$
- Amplitude analysis of decay angles & m(K⁻π⁺)², m(μ⁺μ⁻)² disentangles long-distance effects: tensions reduced

A consistent picture at CMS and LHCb

Rare strange

- Strongly suppressed $s \rightarrow d$ FCNC transitions
- $K_s^0 \rightarrow \mu^+ \mu^-$ long-range dominate. SM prediction ~ 10⁻¹¹
- Best limit comes from LHCb Run 1: $\mathscr{B} < 8 \times 10^{-10}$ at 90% CL

- U2 allows to reach close to the SM prediction; pick up the baton after HIKE cancellation
- Studies of rare hyperons also open up, benefitting from low-momentum proton ID proposed for LHCb U2

Radiative processes

- Photons emitted in b → sγ transitions are, in SM, LH, but many NP models introduce a significant RH component
- γ polarisation constrains RH currents
- Angle between e⁺e⁻ and Kπ decay planes in B⁰ → K^{*0}e⁺e⁻ at low-q² very sensitive to b → sγ photon helicity

- Uncertainties on the observables (transverse asymmetries) from 10% (now) to 2% in U2
- Unique sensitivity at LHCb to search for RH currents

Beyond flavour: spectroscopy

• Discovery has been unrelentingly linear since Run 1

Searches often rely on amplitude analysis; exponentially harder

as statistics increase \rightarrow involve theorists earlier

- Unknown unknowns. But clear targets with U2 statistics:
 - Properties of tetraquarks and pentaquarks
 - Searches for new pentaquarks (e.g. with strangeness in $\Lambda_b \rightarrow \not \!\!\!/ \psi \Lambda \phi$)
 - Doubly heavy baryons and precision charmonium

Beyond flavour: LLP searches

• LHCb made its mark through stringent $A' \rightarrow \mu^+ \mu^-$ limits

- U2 will saturate geometrical limitations, fully exploring theoretically preferred parameter space
- Complementarity of proposed transverse LLP detectors (CODEX-b, MATHUSLA, ANUBIS)

LHCb Upgrade 2: the challenge of pileup

A few highlights from the LHCb U2 FTDR Retaining U1 performance in U2 collisions from 2×10^{33} to 1×10^{34} requires a revolution: $3D \rightarrow$ 4D: vertexing

- 50 ps per hit
- Pixel pitch 55µm
- Extreme fluence
 6 × 10¹⁶n_{eq}/cm²

UK groups leading sensor R&D, prototype 4D demonstrator, high-rate read-out technologies

Detector innovation for flavour at HL-LHC

Innermost fibres of downstream SciFi reach EoL at Run 5.

Occupancies at HL-LHC exceed 10%

Replace with large-area silicon detector (MAPS): 'Mighty Tracker'

- UK leadership from chip design & integration to simulation
- Activity of more than half UK LHCb groups

Detector innovation for flavour at HL-LHC

- UK leadership ab initio, dominating Ring Imaging Cherenkov detectors; continues into U2
- RICH: photon detectors with fast timing → 4D photons assigned to individual vertices
- TORCH: managing mis-ID backgrounds, including high-multiplicity, low-*p* final states requires new PID detectors

UK-initiated; UK-led

Conclusion

"Exploit the full physics potential of the LHC, including flavour"

- The LHCb upgrade II is essential to fulfil that mandate
- Wealth of physics possible sensitive to New Physics at energy scales far exceeding direct searches
- Many of the flagship analyses will remain statistically dominated
- ATLAS and CMS will play important roles; LHCb will dominate
- No competition is likely on the HL-LHC timescale

Backup content

Unitarity triangle: γ - other decays

- Many other decays provide γ sensitivity
 - Varying dependence upon other UT angles, e.g. tree-level B⁰_s → D[∓]_sK[±]: 2β_s − γ
 Introduction of U-spin assumptions & loop-exposure, e.g. B⁰ → π⁺π⁻ and
 - Introduction of U-spin assumptions & loop-exposure, e.g. $\vec{B^0} \to \vec{\pi^+} \pi^-$ and $B_c^0 \to K^+ K^-$
- TD CPV measurement in $B_{\varsigma}^{0} \rightarrow D_{\varsigma}^{\mp} K^{\pm}$ as an example:
 - Reaches 1° precision for γ at end of U2
 - Main systematics (B backgrounds, Δm_S input) scale with statistics into U2
 - Must maintain LHCb performance $U1 \rightarrow U2$ in vertex-association for flavour-tagging & decay-time determination

Dan Johnson

$b \rightarrow s \ell^+ \ell^-$

- LHCb U2 physics case defined 4 scenarios depending on confirmation or reduction in tensions apparent in 2018.
- III and IV more compatible with recent results; U2 statistics and complementarity of decay modes will distinguish them:

Lepton universality in $b \rightarrow q \ell^+ \ell^-$ decays

Anomaly has receded... for now

- In U2 expect 46,000 $B^+ \rightarrow K^{*+}e^+e^-$ and 20,000 $B^0 \rightarrow Ke^+e^-$ decays; precision on R_{K,K^*} better than 1%
- U2 statistics open up complementary modes: $B^+ \rightarrow \pi^+ \ell^+ \ell^- \Rightarrow \sigma(R_\pi) \sim \text{few }\%$

Rare charm

- Anomalies in *b*-hadrons underlines need for studies of FCNC in up-type quarks: key example $D^0 \rightarrow \mu^+ \mu^-$
- In charm sector GIM suppression more effective than down-type (no decoupled heavy *d*-type quark)
- Short distance contributions 10^{-18} ; long distance ($D^0 \rightarrow \gamma \gamma$ recomb.) 10^{-11}
- Currently $\mathscr{B}(D^0 \rightarrow \mu^+ \mu^-) < 6.2 \times 10^{-9}$ at 90% CL
- Will reach 2 × 10⁻¹⁰ at U2
- Up-type parallels to $b \rightarrow s\ell^+\ell^-$ approach SM precision at U2:

