
10 TeV pCM Colliders Overview

Karol Krizka

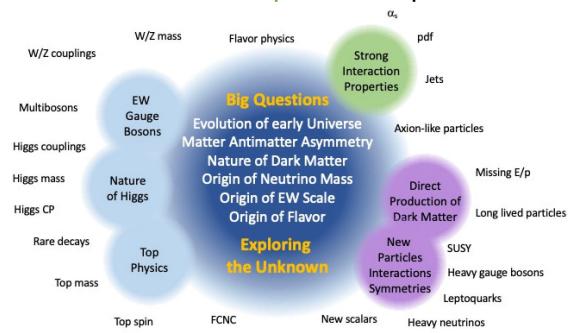
September 25, 2024

What is 10 TeV pCM?

10 TeV $\mu\mu$ stage option *roughly* equates to FCC-hh@100 TeV

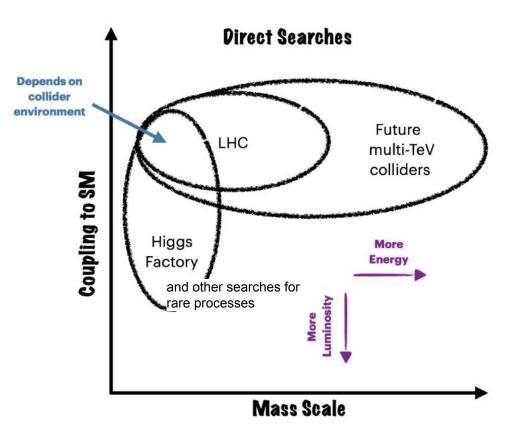
...process dependent statement!

pp @ 100 TeV


- expand reach to coloured exotics (SUSY...)
- multi-Higgs in WBF and GF
- ▶ WBF + multi-boson in many channels
- challenging environment: QCD/pile-up...

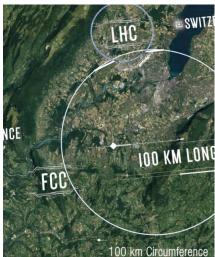
μμ @ 10 TeV

- 2nd generation specific new physics
- a Wcollider!
 - **▼** fine-grained picture of EW/H sector
 - unitarisation, Hoff-shellness, ...
 - ▼ elw. Sudakovs... See C Englert's talk!


Why collider experiments?

Collider experiments allow you to sample a huge space of theories with one experimental setup!

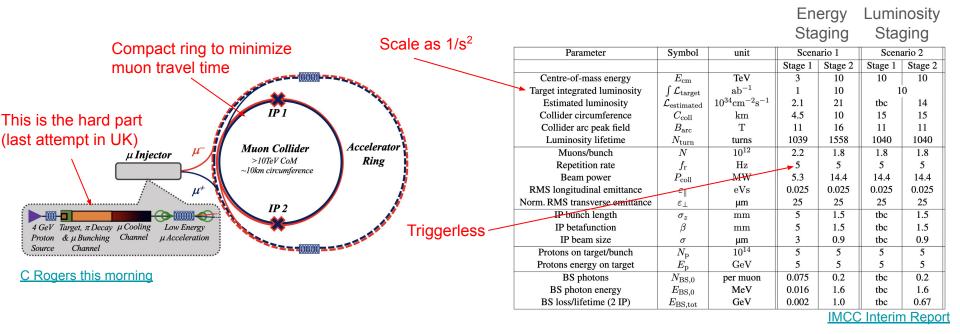
Very useful if you don't know where to look...


Why 10 TeV pCM?

Collider Concepts

FCChh

- Mostly existing technologies in a big (~100 km) tunnel.
- Potential e⁺e⁻ collider as first stage.
- Alternatively the SppC in China.


Muon Collider

- Precision of a lepton collider with energy reach of a hadron collider.
- Significant accelerator R&D needed.
- No official site.

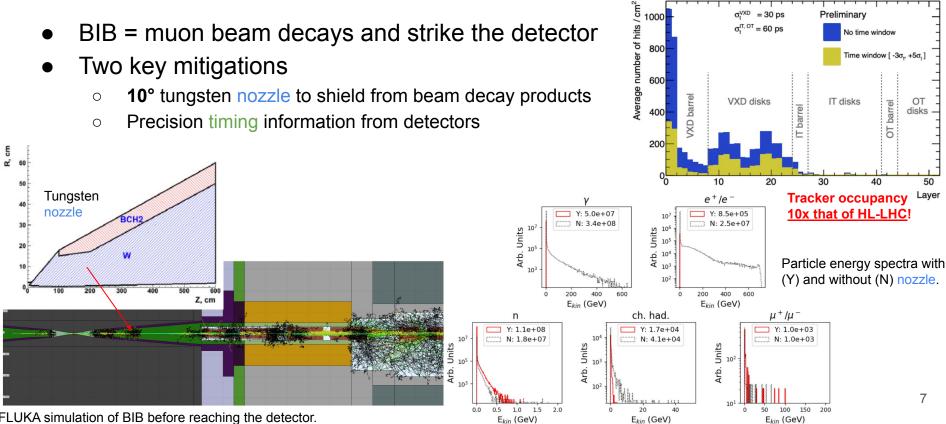
P5 report mentions Fermilab...

Muon Collider: Accelerator Complex

Muon Collider: Beam Induced Background

Tracker occupancy after timing cuts.

 $\sqrt{s} = 1.5 \text{ TeV}$


No time window

Background hits overlay in [-360, 480] ps range

 $\sigma_{\rm c}^{\rm IT,\,OT} = 60~\rm ps$

800

- BIB = muon beam decays and strike the detector

FLUKA simulation of BIB before reaching the detector.

Muon Collider: Detector Concept

hadronic calorimeter

- 60 layers of 19-mm steel absorber + plastic scintillating tiles;
- 30x30 mm² cell size:
- 7.5 λ_I.

electromagnetic calorimeter

- 40 layers of 1.9-mm W absorber + silicon pad sensors:
- 5x5 mm² cell granularity;
- \rightarrow 22 X₀ + 1 λ_1 .

muon detectors

- → 7-barrel, 6-endcap RPC layers interleaved in the magnet's iron yoke;
- 30x30 mm² cell size.

4D tracking with 30-60 ps resolution.

superconducting solenoid (3.57T)

Vertex Detector:

- double-sensor layers (4 barrel cylinders and 4+4 endcap disks);
- 25x25 µm² pixel Si sensors.

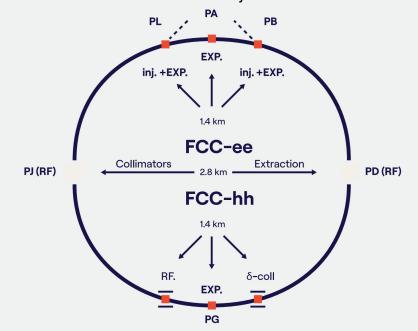
Inner Tracker:

- · 3 barrel layers and 7+7 endcap disks;
- 50 µm x 1 mm macropixel Si sensors.

Outer Tracker:

- 3 barrel layers and 4+4 endcap disks:
- 50 µm x 10 mm microstrip Si sensors.

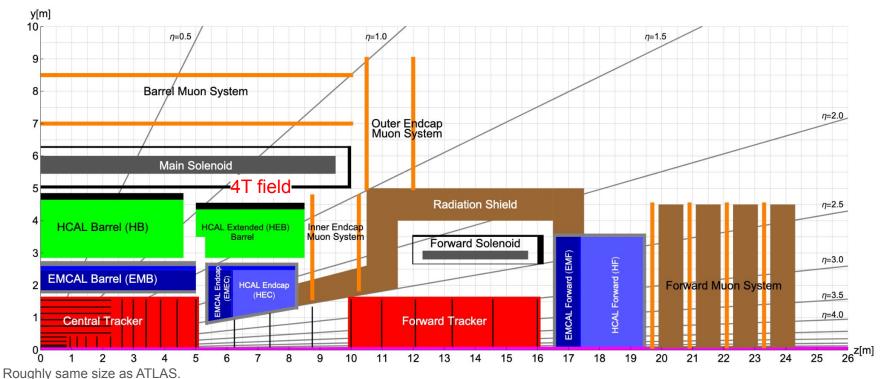
shielding nozzles


Tungsten cones + borated polyethylene cladding.

Could be instrumented?

FCC-hh: Accelerator Complex

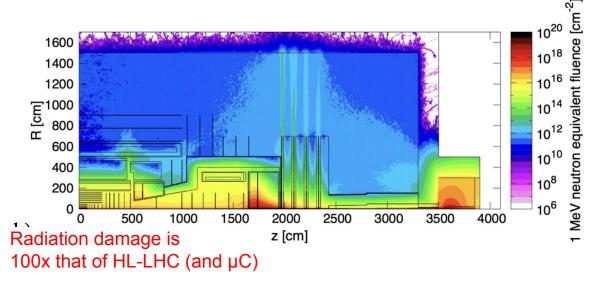
The LHC tunnel could be used for injection at 3.3 TeV.

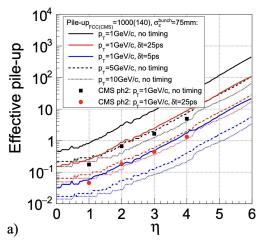


Parameter	FC	C-hh	HL-LHC	LHC		
collision energy cms [TeV]	80	-116	14	14		
dipole field [T]	14 (Nb ₃ Sn) – 2	20 (HTS/Hybrid)	8.33	8.33		
circumference [km]	9	0.7	26.7	26.7		
beam current [A]	C	0.5	1.1	0.58		
bunch intensity [10 ¹¹]	1	1	2.2	1.15		
bunch spacing [ns]	25	25	25	25		
synchr. rad. power / ring [kW]	1020)-4250	7.3	3.6		
SR power / length [W/m/ap.]	13	-54	0.33	0.17		
long. emit. damping time [h]	0.7	7-0.26	12.9	12.9		
beta* [m]	1.1	0.3	0.15 (min.)	0.55		
normalized emittance [μm]	2	2.2	2.5	3.75		
peak luminosity [10 ³⁴ cm ⁻² s ⁻¹]	5	30	5 (lev.)	1 27		
events/bunch crossing	170	1000	132			
stored energy/beam [GJ]	6.1	-8.9	0.7	0.36		
integrated luminosity [fb ⁻¹]	20	000	3000	300		

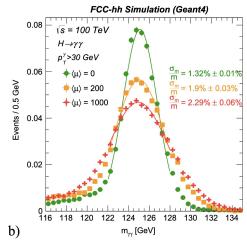
Main challenge is high field magnets.

Discuss: At what level does FCChh imply an FCCee?


FCC-hh: Detector Concept


Increased focus on forward object (ie: tracking up to $|\eta|$ <6)

Needed for pile-up rejection and VBF processes.


FCC-hh: Pile-up of 1000

Object reconstruction studies are very advanced. However studies with pile-up 1000 are important.

5 ps timing required for forward tracker.

Impact on calorimeter can be managed.

Very similar requirements for both machines.

Detector R&D

** Sorry for tracking bias.

Source: The 2021 ECFA detector research and development roadmap (with updates).

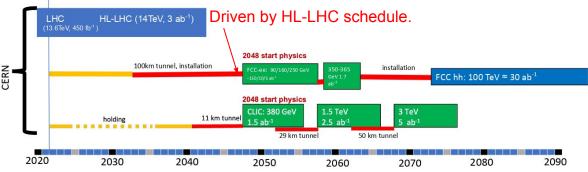
"Technical" Start Date of Facility (This means, where the dates are not known, the earliest technically feasible start		< 2030				2030-2035					2035 - 2040	2040-2045		>2045					
date is indicated - such that detector R&D readiness is not the delaying factor)			Panda 2025	CBM 2025	HIKE 2030	Belle II 2026	ALICE LS3 1)	ALICE 3	LHCb (≳LS4)¹)	ATLAS/CMS (≥ LS4) ¹⁾	EIC	ГНЕС	ILC ²⁾	FCC-ee	CLIC 2)	~2070 ~2070	FCC-eh	~2045	
Vertex Detector ³⁾	MAPS Planar/3D/Passive CMOS LGADs	DRDT 3.1 DRDT 3.4	Position precision σ_{hit} (µm)		≃ 5		≲5	≃ 3	≲3	≲10	≲15	≲3	≃ 5	≲3	≲3	≲3	≃ 7	≃ 5	≲5
			X/X ₀ (%/layer)	≲ 0.1	≃ 0.5	≃ 0.5	≲ 0.1	≃ 0.05	≈ 0.05	≃ 1		≃ 0.05	≲ 0.1	≈ 0.05	≈ 0.05	≲0.2	≃ 1	≲0.1	≲ 0.2
			Power (mW/cm²)		≃ 60			≃ 20	≃ 20			≃ 20		≃ 20	≃ 20	≃ 50			
			Rates (GHz/cm²)		≃ 0.1	≃ 1	≲ 0.1		≲ 0.1	≃ 6		≲ 0.1	≃ 0.1	≃ 0.05	≃ 0.05	≃ 5	≃ 30	≃ 0.1	50
			Wafers area (") ⁴⁾					12	12			12			12		12		12
		DRDT 3.2	Timing precision σ _t (ns) ⁵⁾	10		≲ 0.05	100		25	≲ 0.05	≲ 0.05	25	25	500	25	≃ 5	≲ 0.02	25	≲ 0.02
		DRDT3.3	Radiation tolerance NIEL (x 10 ¹⁶ neq/cm ²)			1				≃ 6	≃ 2						≃ 10 ²		0.5
			Radiation tolerance TID (Grad)							≃ 1	≃ 0.5						≃ 30		0.05
								Te	chnol	oav d	emon	strato	rs?				1		

Timelines

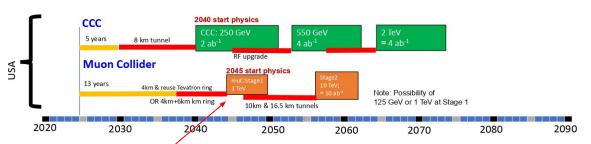
Source:

Snowmass 2021 Energy Frontier Report

Add your own uncertainties!


Estimated cost of FCChh is $2.5x \mu$ C.

Proton collider


Muon collider

Flectron collider

Construction/Transformation

Preparation / R&D

Original from ESG 2020 by UB

Updated July 25, 2022 by MN

International Considerations

P5 Panel Report

US has shown strong interest in a μ C, but nothing decisive.

Support a comprehensive effort to develop the resources—theoretical, computational and technological—essential to our 20-year vision for the field. This includes an aggressive R&D program that, while technologically challenging, could yield revolutionary accelerator designs that chart a realistic path to a 10 TeV parton center-of-momentum (pCM) collider. In particular, the muon collider option builds on Fermilab strengths and capabilities and supports our aspiration to host a major collider facility in the US.

Status of the CEPC Project (ICHEP 2024)

CEPC Planning and Development

- Chinese 100 TeV pp collider is not constrained by HL-LHC timelines.

 Go directly to FCChh?
- CAS is planning for the 15th 5-year plan for large science projects, and a steering committee has been established, chaired by the president of CAS.
- ➤ High energy physics and nuclear physics is one of eight groups (fields).
- > CEPC is ranked No. 1, by every committee (2 domestic and 1 international).
- ➤ A final report was submitted to CAS for consideration, this process is within CAS, and the following national selection process will be decisive.

Final Thoughts

Contact Andy, Sarah or I if you would like to get involved!

- 100 TeV pp and 10 TeV μμ colliders physics competitive by design.
- Accelerator: µC requires significant R&D for novel collider.
 - o FCChh does require much larger infrastructure.
- Detector: high pile-up makes FCChh environment more challenging.
 - μC has similar challenges due to BIB, but "easier".
- FCChh studies are advanced, but μC is ramping up.
 - Improved understanding of pile-up/BIB is important for predictions.
- Don't forget the non-scientific considerations.

Further Reading:

- <u>Future Circular Collider Conceptual Design Report Volume 3</u>
- Towards a muon collider