

BSM @ 10 TeV pCM Colliders

Andy Buckley, **Monica D'Onofrio**, Christoph Englert, Karol Krizka, Michael Spannowsky, **Sarah Williams**

Introduction

- There is a strong motivation to push the energy frontier into the 10s of TeV range. As well as the **indirect** sensitivity to BSM accessed through high-precision measurements of high-mass/ rare processes (Higgs/Top/EW), target **direct** access to:
 - (WIMP) dark matter
 - Probe EWK baryogenesis and shape of Higgs potential.
 - Maximise sensitivity to broad range of BSM particles.
- Exploration is key, but all options would present significant experimental and theoretical challenges
 ⇒ opportunities for study in the coming years!
- Will focus on FCC-eh/hh and the muon collider, but note that arguments relevant for FCC could apply to a 100 TeV pp collider in the CEPC tunnel.

Strong complementarity: EF exploration could directly probe NP seen indirectly at e+e- Higgs factory

Assumptions in sensitivity projections

Lepton colliders: Projections are m< $\sqrt{s/2}$, with assumptions:

- Particles are pair produced
- Backgrounds are low
- High enough cross-section / luminosity

Need to be careful at higher energies when primary production mode would be VBF so particles produced at ranges of energies. Hadron colliders: multiple approaches

- 1. Directly simulate collider beam, collision physics and detector response, and analyse resulting samples.
- 2. Extrapolate from LHC (run 2) using parton luminosity assuming reconstruction efficiencies, background rejection and signal-to-background ratios remain constant.

If you want to try this- check out the "collider reach" programme <u>http://collider-reach.web.cern.ch/</u>

A lot of assumptions here that should be tested- opportunities for future study!

Benchmark collider scenarios

- Table taken from snowmass EF report: <u>https://arxiv.org/abs/2211.11084</u>
- For FCC-hh : some early studies look at impact of varying COM energy in 80-120 TeV range (little impact) but more planned.

Collider	Type	\sqrt{s}	$\mathcal{P}[\%]$	$\mathcal{L}_{ ext{int}}$	
		(TeV)	e^-/e^+	ab^{-1}/IP	
HE-LHC	рр	27		15]
FCC-hh	pp	100		30	~20 years
SPPC	pp	75-125		10-20	
LHeC	ер	1.3		1	
FCC-eh		3.5		2	
CLIC	ee	1.5	$\pm 80/0$	2.5	
		3.0	$\pm 80/0$	5	
μ -collider	$\mu\mu$	3		1	~ 5 years
		10		10	~ 5 years

Case study: SUSY

•Strong-production processes – like top squarks, see in hh an advantage, as expected. Compressed scenarios better covered with muon collider - similar consideration for EWK sparticles including staus

•Consider 10 TeV muon and 100 TeV hh comparisons in the plots below

See Snowmass BSM report: <u>https://arxiv.org/abs/2209.13128</u>

Case study: (minimal-WIMP) dark matter

For minimal WIMP dark matter- EW multiplet with clear thermal targets.

For lepton colliders, X+MET analyses dominate at lower energies with disappearing track more sensitive at higher energies. Mono-muon and mono-W important at muon collider.

Sensitivity of disappearing track analysis strongly dependent on mass splitting and detector design.

For both hh and muon colliders, key to study impact of pileup (mu~1000) and beam-induced backgrounds on tracking efficiency.

Case study: Dark matter

Closer look to disappearing track for Higgsinos- key to reach thermal targets

Constraints from Higgs->invisible

Early studies (<u>https://arxiv.org/pdf/2303.14202</u>) indicate µC competitive with FCC-hh through measuring forward muons in VBF. Result depends on ability to instrument the forwards region (tungsten nozzles).

Case study: hidden sectors

- EF colliders have the potential to either indirectly (through higgs self coupling) or directly probe a first order EWPT through discovering new particles responsible.
- LH plot shows additional heavy singlet mixing with Higgs that could be detected through resonant di-Higgs production.

Long-lived particles @ future EF colliders

- Detector geometry choices that provide similar hermeticity for prompt particles can differ significantly in their ability to reconstruct LLPs → important to consider LLP searches when designing future detectors.
- Background rejection can be as important as signal acceptance.
- Also consider dedicated LLP detectors at future colliders (and whether to integrate their trigger/readout with GPDs).

LLPs

•ALPs and HNLs- lots of complementarity between collider options

Portal	Coupling			
Vector (Dark Vector, A_{μ})	$-\frac{\epsilon}{2\cos\theta_W}F'_{\mu u}B^{\mu u}$			
Scalar (Dark Higgs, S)	$(\mu S + \lambda_{HS}S^2)H^{\dagger}H$			
Pseudo-scalar (Axion, a)	$\frac{a}{f_a}F_{\mu\nu}\tilde{F}^{\mu\nu}, \frac{a}{f_a}G_{i,\mu\nu}\tilde{G}_i^{\mu\nu}, \frac{\partial_{\mu}a}{f_a}\overline{\psi}\gamma^{\mu}\gamma^5\psi$			
Fermion (Sterile Neutrino, N)	$y_N LHN$			

Case study: resonances

Take Z' as "standard candle" .

Complementarity between pp and lepton colliders-FCC-hh has highest sensitivity for direct searches for masses < 28 TeV, muon collider can go to lower couplings and indirectly probe masses >100 TeV

Taken from snowmass BSM report <u>https://arxiv.org/abs/2209.13128</u>

		-	-			-		-
Machine	Туре	√s (TeV)	∫L dt (ab ⁻¹)	Source	Z' Model	5σ (TeV)	95% CL (TeV)	
HL-LHC				R.H.	$Z'_{SSM} \rightarrow dijet$	4.2	5.2	
	рр	14	3	ATLAS	$Z'_{SSM} \rightarrow l^+ l^-$	6.4	6.5	
				CMS	$Z'_{SSM} \rightarrow l^+ l^-$	6.3	6.8	_
				EPPSU*	Z' _{Univ} (g _z '=0.2)		6	
ILC250/	e+ e-	0.25	2	ILC	$Z'_{SSM} \rightarrow f^+ f^-$	4.9	7.7	
CLIC380/ FCC-ee				EPPSU*	Z' _{Univ} (g _Z '=0.2)		7	
HE-LHC/ FNAL-SF	рр	27	15	EPPSU*	Z' _{Univ} (g _Z '=0.2)		11	
				ATLAS	$Z'_{SSM} \rightarrow e^+ e^-$	12.8	12.8	
ILC	e+ e-	0.5	4	ILC	$Z'_{SSM} \rightarrow f^+ f^-$	8.3	13	
				EPPSU*	Z' _{Univ} (g _z '=0.2)		13	
CLIC	e+ e-	1.5	2.5	EPPSU*	Z' _{Univ} (g _z '=0.2)		19	
Muon Collider	μ+ μ-	3	1	IMCC	Z' _{Univ} (g _z '=0.2)	10	20	
ILC	e+ e-	1	8	ILC	$Z'_{SSM} \rightarrow f^+ f^-$	14	22	
				EPPSU*	Z' _{Univ} (g _z '=0.2)		21	
CLIC	e+ e-	3	5	EPPSU*	Z' _{Univ} (g _z '=0.2)		24	
FCC-hh	рр		30	R.H.	$Z'_{SSM} \rightarrow dijet$	25	32	
		100		EPPSU*	Z' _{Univ} (g _z '=0.2)		35	
				EPPSU	$Z'_{SSM} \rightarrow l^+ l^-$	43	43	$ \prec$
Muon Collider	$\mu^+ \mu^-$	10	10	IMCC	Z' _{Univ} (g _z '=0.2)	42	70	`
VLHC	рр	300	100	R.H.	$Z'_{SSM} \rightarrow dijet$	67	87	
Coll. In the Sea	рр	500	100	R.H.	$Z'_{SSM} \rightarrow dijet$	96	130	

Complementarity between FCC-eh and hh- BSM

- Unique opportunities for leptoquark searches up to 3 TeV.
- Sensitivity to compressed supersymmetric scenarios that would elude discovery at FCC-hh.
- Novel charged current interactions for Heavy Neutral Lepton (HNL) discovery

Plots taken from vol. 1 of FCC CDR: <u>https://fcc-</u> cdr.web.cern.ch/

Hadron vs muon colliders: strengths and weaknesses

pp collisions:

- Favour QCD couplings → strongest sensitivity for strongly produced processes (i.e. squarks and gluinos).
- High luminosities enable study of rarer processes.

But:

- High theoretical uncertainties on proton PDFs at high energies- but expect significant theoretical development (EW bosons in PDFs).
- Large QCD backgrounds and challenging pileupcan we simulate mu~1000, including non-jet components, reliably? (it isn't integrated in current toolchain).

Muon collisions:

- Primary production mechanism VBF ⇒ favour BSM with EW couplings.
- Smaller theoretical uncertainties on (smaller) backgrounds.

But:

- Lower s-channel production crosssections.
- Need to handle beam-induced backgrounds due to muon decay.

Complementarity beyond colliders

In-keeping with desires to "delve deep" and "search wide", 10 TeV pCM colliders provide strong complementarity to sensitivity achieved across neutrino physics, direct detection and through astrophysical/cosmological probes.

Similarly if gravitational wave signals indicative of 1st order PT in Early Universe were seen, EF searches could directly probe the new physics responsible.

Challenges/opportunities for further study.

- Reconstruction: highly boosted objects.
- For hadron colliders: how to model pileup ~1000. Can we build detectors in such extreme environments?
- Muon colliders: beam induced background requires careful study and restricts detector design (many projections rely on 'precision' associated with lepton collisions that could be compromised by BIB).
- For both colliders: new physics studies planned for next ESPPU (see next slide)

I.e. lots of areas where we could make key contributions!

The roadmap ahead: how to get involved

FCC-hh: dedicated kick-off meeting on 3rd September aiming to plan studies to feed into the ESPPU: <u>https://indico.cern.ch/event/1439072/</u>

- Dedicated efforts planned for new studies for ESPPU
- Opportunity to build on previous UK efforts towards FCC-hh under the FCC-UK umbrella (i.e. https://indico.cern.ch/event/1147914/ and https://indico.cern.ch/event/1147914/ and https://indico.cern.ch/event/1147914/ and https://indico.cern.ch/event/1147914/ and https://indico.cern.ch/event/1254077/)

Muon collider: UK workshop in B'ham on July: <u>https://indico.stfc.ac.uk/event/983/</u>

• ESPPU studies run through IMCC (<u>Tuesdays at 4 pm</u>)

Great opportunity to get involved in either!

Conclusions

- 10 TeV pCM machines allow a broad exploration that could directly discover BSM physics linked to key questions about our universe- DM, EWPT as well as characterising NP discovered indirectly through precision measurements at a Higgs factory.
- Lots of complementarity between FCC-hh and a muon collider → a world where we could have both would be very exciting!
- Lots of opportunities to contribute to (new) studies for the ESPPU- please get in touch if interested!

"Every time we increase pCM 10-fold...

... we learn something entirely new!" (Christophe Englert, yesterday)

Back up

Adding an electron-proton collider to the FCC: FCC-eh

The FCC-eh:

E_e=60 GeV 50 TeV protons, √s = 3.5 TeV Integrated luminosity: ~ 1-2 ab⁻¹ Concurrent ep + pp (eA + AA) operations

Physics complementarity FCC-hh/FCC-eh

- •PDFs, strong coupling constant, low-x measurements
- •W mass, top mass, on other precision measurements
- •Higgs measurements with additional sensitivity

•Searches for new physics, including prompt and **long-lived new** scalars from Higgs, SUSY particles, heavy neutrinos, dark photons and axions

•High-energy and high-density measurements of heavy ion collisions

- Low pileup
- Low background
- But also lower production rate

Impact of FCC-eh on FCC-hh: PDF

•Complete unfolding of parton contents in unprecedented kinematic range: **u,d,s,c,b,t, xg**

LLP (2)

•Interpreting the results for a specific model, where lifetime and production rate of the LLP are governed by the scalar mixing angle.

Dark photons

