ECFA-UK Meeting of UK studies for European Strategy Update Durham, 23-26 September 2024

Flavour physics at 10 TeV pCM colliders

Stefania Ricciardi, Stefan Schacht, Felicia Volle

Science and Technology Facilities Council

The University of Manchester

Flavour physics is exciting!

- Matter-antimatter asymmetry
- Access of higher energy scales in loop-mediated processes than directly producible in colliders
- Indirect discoveries through precision SM measurements
- Flavour anomalies
 - Anomalous magnetic moment of the muon
 - Deviations in $b \to s \ell^+ \ell^-$ and $b \to c \ell^- \bar{v}$ transitions
- Probing flavour structure of couplings of potential BSM particles to quarks and leptons

Nature Phys. 18 (2022) 1, 1-5

Brief recap' of current flavour anomalies

Deviations in differential BFs and angular observable measurements of electroweak penguin decays.

3

LFU tests in semileptonic tree decays deviate from the HFLAV SM prediction.

Advantages for flavour physics studies

Attribute	Y(4S)	рр (LHC)	Z	FCC-hh	Muon collider	
All hadron species		\checkmark	\checkmark	\checkmark	\checkmark	
High boost		\checkmark	\checkmark	\checkmark	\checkmark	
Enormous b production cross-section		\checkmark		$\checkmark\checkmark$		
Negligible trigger losses	\checkmark		\checkmark		\checkmark	
Low backgrounds	\checkmark		\checkmark		\checkmark	
Initial energy constraint	\checkmark		(✔)		(✔)	
Monteil, Wilkinson: Eur. Phys. J. Plus 136 (2021) 837]						

Centre of mass energy for which the **cross sections for BSM** heavy particle production at pp and muon colliders are **equal**.

25/09/2024

B anomalies @ muon collider. Model independent

- At 10 TeV MuC, $\mu\mu \rightarrow bs$ can probe scales up to 100 TeV.
- In case of non-standard signal, forward-backward asymmetry gives insight into chirality structure of new physics.

Black: Current status from rare bhadron decays.

<u>Coloured:</u> $\mu\mu \rightarrow bs$ cross-section, forward-backward asymmetry and combining both using 10 ab⁻¹ at 10 TeV. [Altmannshofer, Gadam, Profumo: 2306.15017]

B anomalies @ FCC-hh and muon collider Model independent

- At FCC-hh obtain bound on $bs \rightarrow \mu\mu$ from $pp \rightarrow \mu\mu$.
- Dashed orange line: **Required Wilson coefficient** to explain current B anomalies.
- Solid lines: Comparison of reach of future colliders.
- $M_{\sqrt{s}}^{cut}$: maximum invariant mass of the outgoing particles in $2 \rightarrow 2$ scattering.

[Azatov, Garosi, Greljo, Marzocca, Salko: 2205.13552]

B anomalies @ FCC-hh and muon collider Model dependent [Azatov, Garosi, Greljo, Marzocca, Salko: 2205.13552]

HL-LHC

FCC-hh

- 3 TeV MuC similar potential as FCChh, but direct detection less likely.
- 10 TeV MuC has edge over FCC-hh for full exploration of parameter space.

Muon g-2

<u>"No-Lose"-Theorem:</u>

Highly likely to observe BSM physics at muon collider under two generic assumptions:

- 1) g-2 anomaly is genuine.
- 2) sub-GeV solutions are outruled.

Example signatures for singlet scenario (no EW charge) with scalar and vector BSM particle.

Charged Lepton Flavour Violation

[The Muon Smasher's Guide: 2103.14043]

- $\mu\mu \rightarrow \tau\mu$ related to $\tau \rightarrow 3\mu$ by crossing symmetry.
- <u>Black:</u> Theory scenarios correlating $\tau \rightarrow 3\mu$ and $\mu \rightarrow 3e$.
- <u>Coloured:</u> Different centre of mass energies of muon collider at 1ab⁻¹.
- $\mu\mu \rightarrow e\mu$ not competitive to $\mu \rightarrow 3e$ experiments.

Complementary probe of charged lepton flavour violation.

Neutrinos at muon collider

[King: AIP Conf.Proc. 530 (2000) 1, 165-180]

- Neutrino radiation disk emanating out from muon collider ring
- High-intensity highly-collimated neutrino beam [radiation hot spot downstream of straight sections]
- High energy range from GeV to TeV
- Precisely known composition

Neutrinos at FCC-hh

Intense flux of high-energy neutrinos in the forward direction at FCC-hh.

In a 10t detector, 1.5 km downstream, FPF@FCC could record 10⁹ electron and muon neutrinos and 3 x 10⁷ tau neutrinos (!)

Novel physics opportunities include:

- High-precision tests of neutrino flavour interactions universality
- QCD: (Polarised) proton PDFs and nuclear nPDFs in uncharted kinematic regimes
- BSM: Measurement of neutrino charge radius

[FPF@FCC: 2409.02163]

Conclusions

- Flavour physics gives a huge motivation for future collider experiments.
- Flavour anomalies have driven studies so far.
- Once new particles are found, the exploration of the flavour structure of their couplings is paramount.
- FCC-hh benefits from enormous cross section for all flavours.
- Muon colliders combine the advantages of both proton-proton and electron-positron colliders.

As a community we need a more systematic approach to fully explore the potential of both FCC-hh and muon colliders for flavour physics.

Backup

Cross-sections

[Chobanova, Santos, Prouve, Lamas: 2012.02692]

Particle	$\sigma_P^{50}/\sigma_P^{13}$	$\sigma_P^{100}/\sigma_P^{13}$	$\sigma_{ar{P}}^{13}/\sigma_{P}^{13}$	$\sigma_{ar{P}}^{50}/\sigma_{P}^{50}$	$\sigma_{ar{P}}^{100}/\sigma_{P}^{100}$
$ au^-$	2.5	3.8	1.0	1.0	0.99
B_c^+	7.2	14	1.6	0.97	0.98
B_d^0	3.1	5.1	0.99	0.99	0.99
B^+	3.1	5.1	0.99	1.0	1.0
B_s^0	3.2	5.4	1.0	1.0	0.99
Λ_b^0	3.0	4.1	0.89	0.89	0.90
K^0	1.6	2.0	0.98	0.99	0.99
K^+	1.6	2.0	0.97	0.98	0.99
Λ^0	1.5	1.9	0.86	0.90	0.92
Σ^+	1.5	1.9	0.89	0.93	0.94
Ω^{-}	1.6	2.1	0.98	0.95	0.96
χ^-	1.6	2.0	0.96	0.97	0.97
χ^0	1.6	2.0	0.95	0.96	0.97
$D^{0,+}$	2.2	3.1	1.0	1.0	1.0
Λ_c^+	2.1	2.9	0.90	0.93	0.94

Energy and luminosity of benchmark colliders

[Azatov, Garosi, Greljo, Marzocca, Salko: 2205.13552]

Collider	C.o.m. Energy	Luminosity	Label
LHC Run-2	$13 { m TeV}$	$140~{ m fb}^{-1}$	LHC
HL-LHC	$14 \mathrm{TeV}$	$6 \mathrm{~ab^{-1}}$	HL-LHC
FCC-hh	$100 { m TeV}$	30 ab^{-1}	FCC-hh
Muon Collider	$3 \mathrm{TeV}$	$1 \mathrm{~ab^{-1}}$	MuC3
Muon Collider	$10 \mathrm{TeV}$	$10~{ m ab}^{-1}$	MuC10
Muon Collider	$14 \mathrm{TeV}$	$20 { m ~ab^{-1}}$	MuC14

Scalar leptoquark search

[Azatov, Garosi, Greljo, Marzocca, Salko: 2205.13552]

As shown by the extensive literature [23, 25, 161, 162, 165–180], S_3 is the only scalar leptoquark that can accommodate $bs\mu\mu$ anomalies at the tree level. After integrating out S_3 , we find the following contribution to the relevant effective operators

$$\Delta C_9^{\mu} = -\Delta C_{10}^{\mu} = \frac{\pi}{\sqrt{2}G_F \alpha V_{ts}^* V_{tb}} \frac{\lambda_{b\mu} \lambda_{s\mu}}{M_{S_3}^2} .$$
(6.5)

(6.6)

The fit to the $bs\mu\mu$ anomalies then implies

$$\lambda_{b\mu}\lambda_{s\mu} = 6.6 \times 10^{-4} \left(\frac{M_{S_3}}{\text{TeV}}\right)^2 \left(\frac{\Delta C_9^{\mu}}{-0.39}\right) \ .$$

