ECFA 2024, University of Durham, IPPP

DUNE: now and in the future Dr Linda Cremonesi

For general matrix *U*

β l_{α}^{+} \wedge l_{β}^{-} $\Lambda^{\dagger}{}_{\alpha}$ **Neutrino flavour oscillations: questions?**

 V_i

What is the status of energy/momentum conservation in the derivation

2015 Nobel Prize in Physics

 $\frac{1}{\beta}$

University of London

Neutrino flavour oscillations: questions?

 V_i

2015 Nobel Prize in Physics

Discovery sensitivity to CP violation, mass ordering, and θ_{23} octant.

High-precision measurements of Δm_{32}^2 , δ_{CP} , θ_{23} , θ_{13} in a single experiment.

Sensitivity to MeV-scale neutrinos, such as from a galactic supernova burst.

Low backgrounds for sensitivity to BSM including baryon number violation.

DUNE: Physics Goals

LBNF beamline: world-leading intensity

-
- more than a full oscillation period
- -
	-
-

LArTPC: flavor & energy reco over a broad range of topologies

- reconstruction
- Excellent e/μ and e/γ separation

• 60% of interactions at DUNE energy have final state pions \rightarrow LArTPC enables precise hadron

Far Detector: two readout technologies

- Horizontal drift (HD, left) using wire readout planes, four drift regions
- Vertical drift (VD, right) using two 6.25m drift regions and central cathode
	- Simpler to install \rightarrow first DUNE FD module will use vertical drift
	- VD is baseline design for modules 3 and 4

- Main purpose: enable prediction of Far Detector reconstructed spectra
- Movable detector system: LArTPC with muon spectrometer
- Off-axis data in different neutrino fluxes constrains energy dependence of neutrino cross sections
- Same target, same technology → inform predictions of reconstructed Ev in Far Detector

DUNE Design: Systematics constraints for precision physics

DUNE Plans and Installation

Phase I

Ramp to 1.2 MW beam intensity

Two 17kt (10kt fid.) LAr TPC FD modules. One HD on VD.

Near detector: ND-LAr + TMS (steel/scint. range stack) + SAND.

Moveable to enable PRISM.

DUNE Plans and Installation

Phase I

Ramp to 1.2 MW beam intensity

Two 17kt (10kt fid.) LAr TPC FD modules. One HD on VD.

Near detector: ND-LAr + TMS (steel/scint. range stack) + SAND.

Moveable to enable PRISM.

Phase II

Proton beam increase to 2.4 MW

Four FD modules (3 LAr TPCs + 1 new tech)

TMS Upgraded to a More Capable Near Detector (MCND)

This has been fully endorsed by P5

LBNF was built for the full programme (Phase I+II)

Resources and funding are still tbd but a first very positive message is that US-DOE has committed to contribute at a significant level.

Timelines

Phase I

- **• FD cavern excavation complete!**
- FY29: Start science w/ FD-VD
- FY30: FD-HD fully operational
- FY31: Start beam-based science (1.1-1.6MW)!

Phase II

- Year 4: FD3 fully operational
- Year 6: FD4 fully operational
- Year 7: More Capable Near Detector fully operational
- Beam ramp up to 2.3MW in 15 years

Prototypes

- FD prototypes operating at CERN (ProtoDUNEs-2)
	- HD collected beam over the summer
	- VD commissioning in the autumn
- ND-LAr 2x2 demonstrator (modular liquid argon TPC) is operating in antineutrino beam at Fermilab
	- Took 6 days of data before summer shutdown and will resume data taking once NuMI is back.

FD spectra are sensitive to CP violation

• If $\delta_{CP} \sim -\pi/2$, DUNE will measure an enhancement in electron neutrino appearance, and a reduction in electron antineutrino appearance

FD spectra are sensitive to CP violation

Queen Mary **University of London**

-
- If $\delta_{CP} \sim -\pi/2$, DUNE will measure an enhancement in electron neutrino appearance, and a reduction in electron antineutrino appearance
- If the mass ordering is normal, DUNE will measure a much larger enhancement in electron neutrino appearance, and a reduction in electron antineutrino appearance
- MO, δ_{CP} , and θ_{23} all affect spectra with different shape \rightarrow additional handle on resolving degeneracies
- If new physics is present, there may be no combination of MO, δ_{CP} , and θ_{23} that fits data

- For best-case oscillation scenarios, DUNE has
	- > 5σ mass ordering sensitivity in 1 year
	- > 3σ CPV sensitivity in 3.5 years

MO and CPV if nature is kind

MO and CPV if nature is unkind

- For worst-case oscillation scenarios, DUNE has >5σ mass ordering sensitivity in 3 years
- In long term, DUNE can establish CPV over 75% of δ_{CP} values at >30 *δCP*
- Arrows indicate assumed staging scenario

Precision measurements of 3-flavor parameters

Eur. Phys. J. C 80, 978 (2020)

- Ultimate precision 6-16° in δ_{CP}
- World-leading precision (for longbaseline experiment) in θ_{13} and $\Delta m_{32}^2 \rightarrow$ comparisons with reactor measurements are sensitive to new physics θ_{13} and Δm^2_{32}

Additional Neutrino Physics

- DUNE FD will observe atmospheric, solar, and supernova neutrinos
- Argon target gives unique sensitivity to MeV-scale electron neutrinos

•
$$
\nu_e + {}^{40}Ar \rightarrow e^- + {}^{40}K^* (E_\nu > 1.5 \text{ MeV})
$$

•
$$
\nu_e + {}^{40}Ar \rightarrow e^+ + {}^{40}Cl^* \ (E_\nu > 7.5 \text{ MeV})
$$

- $\nu_x + e^- \rightarrow \nu_x + e^-$ (pointing)
- Highly complementary to other experiments (Hyper-K, JUNO) that predominantly see $ν_e$ via IBD

DUNE Collaboration

- DUNE is an international collaboration of 1400 scientists and engineers from 37 countries + CERN (and counting)
- UK:
	- ~140 collaborators
	- Contributed 2 Spokes, Leads in all relevant Consortia, Resource Board Chair, ProtoDUNE coordinator, several working groups conveners, and more.

UK leadership in LBNF

- Daresbury and RAL are world centres of accelerator expertise
- **PIP-II:** Producing RF cavities for the PIP-II upgrade for the LBNF 1.2 MW beam and eventual 2.4 MW goal
- **LBNF Target:** supply 1.2 MW helium-cooled graphite target plus associated infrastructure

UK leadership in DUNE

- Building the majority of readout planes (137 **APAs**) for the horizontal drift FD - Major construction factory at Daresbury.
- Providing the **DAQ** for the first two FD and ND.
- Delivering LAr **reconstruction software** for the FD and **distributed computing** contributions.
- Additional contributions from fellowships funding in the ND simulation and reconstruction, and neutrino oscillation analysis.
- Phase-II
	- Currently, strong UK R&D contributions to FD4 and NDGAr, and overall leadership of Phase II effort.
	- A proposal to prototype FD4 technology in Boulby currently with STFC.

Conclusion

• Unique and complementary reach in oscillations, MeV-scale neutrinos, and

- DUNE is a long-baseline oscillation experiment and neutrino observatory
- BSM searches
- DUNE has an active prototyping program, with excavation complete and $component$ s under construction \rightarrow start of science in this decade
- The UK has strong leadership in LBNF and DUNE projects.

<u>SANDER SA</u>

47

Thank you!

<u>and</u> the

A broad physics programme:

- Large, sensitive underground detectors are excellent to:
	- Observe supernova burst neutrinos
	- Measure solar and atmospheric neutrinos
	- Search for new physics (nucleon decays, cosmogenic dark matter, etc.)
- Intense beams with capable near detectors are excellent to:
	- Search for new physics produced in the beamline
	- Search for new physics in rare interactions (i.e. neutrino tridents)

DUNE Design: Wideband Beam

- The LBNF neutrino beam will provide neutrinos and antineutrinos with energies from 0-5+ GeV
- Simulated neutrino fluxes at the far detector are shown below.

Liquid argon TPC

- Argon is a noble element -> small electronegativity
- Liquid argon ~ 1000 times more dense than gas Argon -> increase likelihood of neutrino interactions
- Relatively inexpensive

time

Animation by Bo You (BNL)

PMNS Parametrisation - 3 flavours

Atmospheric $\theta_{23} \sim 45^\circ$ $\Delta m_{32}^2 \sim \pm 2.5 \times 10^{-3} eV^2$ "Reactor/LBL" $\theta_{13} \sim 8.5^{\circ}$ *δCP*??? Solar $\theta_{12} \sim 33^o$ $\Delta m_{12}^2 \sim 7.5 \times 10^{-5} eV^2$

$$
U = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{+i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & e^{i\alpha} & 0 \\ 0 & 0 & e^{i\beta} \end{pmatrix}
$$

 : CP-violating phase *δ* α, β : Majorana phases

$$
s_{ij} = \sin \theta_{ij}, c_{ij} = \cos \theta_{ij}
$$

$$
\theta_{ij} : \text{the mixing angles}
$$

Unique challenge for ND: pile-up

- Neutrino pile-up: very high rate at near site motivates pixelated readout and optical modularity
- Pixel readout: Natively 3D information in raw data, for resolving activity that would overlap in 2D projections
- Optical modularity: For charge-light matching, to allow association of detached energy (e.g. from neutrons)

One beam spill at ND-LAr -200 500 600 $₂$ $\frac{100}{100}$ </sub> 900

DUNE Design: PRISM

- ND-LAr + Spectrometer can be moved off-axis to enhance flux at lower energies.
- specta and build analysis with minimal interaction modelling.

• These samples allow one to build a linear combination to match FD oscillated

DUNE Design: Precision Reco

• The far detector must be able to identify flavour and reconstruct neutrino energy over the broad range over energies and interaction topologies provided by the beam.

-
- LAr TPC technologies fulfil both and scales to very large detector mass.
- DUNE will use a combination of horizontal drift and vertical drift modules.

FD1-HD

- Broad range of L/E at ND and FD \rightarrow search for non-SM oscillations
- violation
- Very large matter effect → uniquely sensitive to some NSI

• High statistics neutrino and antineutrino measurements \rightarrow search for CPT