Hyper-Kamiokande UK

Prof. Helen O'Keeffe, Lancaster University On behalf of the Hyper-K UK collaboration ECFA meeting, University of Durham, Sept. 2024.

The Hyper-Kamiokande Experiment

J-PARC beamline

Near detectors

Intermediate water Cherenkov detector

Far detector

Beamline and near detectors

J-PARC beamline: upgraded from 0.75 MW to 1.3 MW.

Near detectors: Continued operation of the upgraded T2K near detectors in Hyper-K era.

Intermediate Water Cherenkov Detector (IWCD):

- Measurement of the beam at different off-axis angles.
- "monochromatic" energy sample at each off-axis angle.
- Can be weighted and combined to create an arbitrarily shaped neutrino energy spectrum.

Far detector

Water Cherenkov detector:

- Approx. 8 x Super-K volume.
- 20,000 PMTs (50 cm diameter) with 2 x Super-K efficiency.

Hyper-Kamiokande construction

Construction: Started in 2020. *Data-taking:* Expected 2027, *with beam*

2020: Start of construction

2022: Centre of the dome reached

2023: Dome excavation complete

Physics programme

Physics: Neutrino oscillations

Precision measurement of neutrino oscillations:

- Discovery of *CP* violation at $> 5\sigma$ for > 60% of δ_{CP} .
- 1σ resolution of δ_{CP} in 10 years:
 - ~20° for $\delta_{CP} = -90^\circ$
 - ~6° for $\delta_{CP} = 0^\circ$
- Reduction of systematic uncertainty has sizable impact.

True normal ordering (known), 10 years $(2.7 \times 10^{22} \text{ POT } 1.3 \text{ v.}\overline{v})$ $\sin^2\theta_{13}=0.0218\pm0.0007$, $\sin^2\theta_{23}=0.528$, $\Delta m_{32}^2=2.509\times10^{-3}\text{ eV}^2/\text{c}^4$

Physics: Proton decay, solar neutrinos

Proton decay:

- Proton decay search can be extended by an order of magnitude beyond current limits.

Solar neutrinos:

- ~130 events expected per day ($E_{Th} = 4.5 \text{ MeV}$)
- Confirm MSW effect by observation of upturn in energy spectrum.

Hyper-K 10 years:

 $> 3\sigma$ sensitivity for spectrum upturn ($E_{Th} = 4.5 \text{ MeV}$)

Physics: Neutrino astrophysics

Supernova burst:

- Exceptional statistics due to size of Hyper-K.
- Excellent complementarity with other experiments.
- >70k neutrinos expected for 10 kpc supernova.

Diffuse Supernova Neutrino Background (DSNB):

Hyper-K Europe and UK

~600 persons from 22 countries and growing!

- Project hosts
 - Far detector: University of Tokyo
 - Beam/near detectors: KEK/J-PARC
- UK is second largest member of Hyper-K.
- International leadership roles: International cospokesperson, six working group conveners, Deputy Technical Coordinator.

Recognised experiment at CERN (RE45)

- Active member of CERN neutrino platform.
- Electronics assembly and testing at CERN.

Europe	335 members	Asia	164 members
Armenia	3	India	9
Czech	8	Korea	19
France	50	Japan	136
Germany	1		
Greece	4	Oceania	9 members
taly	46	Australia	9
Poland	45	Americas	67 members
Poland Russia	45 21	Americas Brazil	67 members 3
Poland Russia Spain	45 21 45	Americas Brazil Canada	67 members 3 43
Poland Russia Spain Sweden	45 21 45 5	Americas Brazil Canada Mexico	67 members 3 43 11
Poland Russia Spain Sweden Switzerland	45 21 45 5 14	Americas Brazil Canada Mexico USA	67 members 3 43 11 10
Poland Russia Spain Sweden Switzerland Ukraine	45 21 45 5 14 2	Americas Brazil Canada Mexico USA Africa	67 members 3 43 11 10 11 members

KING'S *College*

LONDO

IMPERIAL

Ϋ́́

Science and

Facilities Council

Technology

University of Glasgow

OXFORI

Meeting at J-PARC

Lancaster University

The

Of

University

Sheffield.

UNIVERSITY OF

LIVERPOOL

WARWICK

Hyper-K UK: Beamline and outer detector

Beamline:

- Beam targets and windows for highpowered operations.
- Upgraded target designs to increase flux and reduce wrong-sign contamination.
- Simulation of hadron production from target.

Figure from L. Machado, Neutrino Beam Simulations for the Hyper-Kamiokande experiment and target alternatives, XXXI International Conference on Neutrino Physics and Astrophysics, 2024

Outer detector:

- Essential veto for background particles.
- Selection and validation of PMTs for OD.
- Design of outer detector electronics.
- Design, construction, installation and commissioning.

Hyper-K UK: DAQ and calibration

DAQ:

- Software-based DAQ, trigger and monitoring systems using "off the shelf" hardware.
- Sufficient buffer space in case of supernova.
- Simple trigger for E > 10 MeV events + sophisticated low energy triggers.
- Fault tolerant, robust and reliable.

UK test stand and participation in electronics tests at CERN by end of 2024.

Calibration:

- Optical calibration systems to make position/time dependent measurements of
 - water absorption/scattering
 - PMT timing
 - PMT gain.
- Light injection via bare optical fibre, wide angle diffuser or collimator.
- LED pulser board allows tuning of light intensity via custom software.

Long-term deployment tests in Super-K.

Hyper-K UK: Near detectors and IWCD

ND280:

- T2K's off-axis near detector at 280 m.
- Upgrade completed first data this year!
- Increased efficiency for high-angle and low momentum tracks.
- Ongoing UK support for operations and analyses.

IWCD:

- New detector around 1 km from target.
- UK providing DAQ and light injection systems.
- Leading contributions to analysis and software development.

Hyper-K UK: Physics, software and computing

Software and computing:

UK leading development of:

- Simulation software for far and intermediate detectors.
- Oscillation analysis framework (MaCh3)
- Distributed computing model.

Physics:

- Sensitivity studies for CP-violation and oscillation parameters.
- Proton decay and BSM physics
- Supernova neutrinos, diffuse supernova neutrino background and astrophysics.
- Atmospheric neutrinos.
- Measurements of $\sigma(v_e)/\sigma(v_\mu)$ and $\sigma(\bar{v}_e)/\sigma(\bar{v}_\mu)$ using the intermediate detector.
- (Measurements using near detector)

Hyper-K UK: Future

Next 5 years:

- Construction will complete in 2027.
- UK members will be on site for installation, commissioning and operation of key systems.
- UK will maintain its systems during data-taking operations.
- UK will maintain leading roles in software, physics and computing to ensure readiness for "first physics".

First physics results!

Next 5 -10 years:

- Build upon first physics results:
 - Mass ordering: $3.8 6.2\sigma$ depending on $\sin^2 \theta_{23}$
 - CP violation: 5σ discovery, > 60%
 - Proton decay: $p \rightarrow e^+\pi^0$: 6×10^{34} y
 - $\sim > 3\sigma$ sensitivity for the solar neutrino spectrum up-turn
 - ~70k events @10 kpc supernova
 - ~4 events/year diffuse supernova neutrino background
- Improved systematic uncertainties.
- Near detector upgrade
- Studies for future improvements to the detectors its beamline and detectors.

Exciting physics results expected in the next 10 years in addition to CP-violation.

Conclusions

- Hyper-K is currently under construction in Japan.
- Data taking (with beam) is expected to start in 2027.
- Extremely rich physics programme:
 - Neutrino oscillations: CP violation, precision measurements of mixing parameters, mass ordering.
 - Neutrino astrophysics: Supernova bursts, solar neutrinos, DSNB.
 - Proton decay limits improved by a factor of 10.
 - Atmospheric neutrino measurements
- Significant UK involvement in the project, established international leadership.
- Leading involvement from the UK in physics, software and computing.
- Opportunity to further develop the experiment, beamline and detectors.

Exciting, important results expected in the coming decade.