### Neutrino physics: what's our plan after DUNE and HK



C. T. Rogers Rutherford Appleton Laboratory



Science and Technology Facilities Council

### Neutrinos

- Long baseline neutrino programme looks very strong
- DUNE phase 1 is under construction
  - Supported by Fermilab as a neutrino source
- DUNE phase 2 is considered
  - P5 report
- T2HK is under construction
  - Beam upgrade
  - Detector upgrade
- Its crazy to talk about future after DUNE & T2HK
  - 20+ years away with good science in the meantime
  - Saturated physics community delivering existing facilities
- But:
  - Not clear there is a path for superbeams beyond next generation
  - Time required to deploy a major new facility is ~25 years

## DUNE – plans (potential)

| Experiment Stage | Physics Milestone                                                | Exposure      | Years    |
|------------------|------------------------------------------------------------------|---------------|----------|
|                  |                                                                  | (kt-MW-years) | (Staged) |
| Phase I          | $5\sigma$ MO ( $\delta_{ m CP}=-\pi/2$ )                         | 16            | 1-2      |
|                  | 5 $\sigma$ MO (100% of $\delta_{ m CP}$ values)                  | 66            | 3-5      |
|                  | $3\sigma$ CPV ( $\delta_{ m CP}=-\pi/2$ )                        | 100           | 4-6      |
| Phase II         | $5\sigma$ CPV ( $\delta_{ m CP}=-\pi/2$ )                        | 334           | 7-8      |
|                  | $\delta_{ m CP}$ resolution of 10 degrees ( $\delta_{ m CP}=0$ ) | 400           | 8-9      |
|                  | $5\sigma$ CPV (50% of $\delta_{ m CP}$ values)                   | 646           | 11       |
|                  | $3\sigma$ CPV (75% of $\delta_{ m CP}$ values)                   | 936           | 14       |
|                  | $\sin^2 2\theta_{13}$ resolution of 0.004                        | 1079          | 16       |

Neutrino beam available in 2032

Snowmass Neutrino Frontier: DUNE Physics Summary, Dune Collaboration, https://arxiv.org/abs/2203.06100





T2HK



- T2HK
  - Accelerator upgrade to 1.3 MW
  - Far Detector upgrade
  - Near Detector upgrade



### **Direct Production**



■ Direct production → event rate follows

beam power on target \* detector mass

- Detector mass proportional to budget (linear with time)
- Beam power historically rises rather slowly with time
  - What is the limit?

### Limits on proton beam power

- Beam loss
  - Rule of thumb allow 1 W/m of uncontrolled loss
  - As beam power increases, fractional loss decreases
  - 0.25 MW ISIS  $\rightarrow$  O(1) % losses
  - Increasing beam current makes things harder
    - Space charge
    - Instabilities
  - Losses need to be better controlled
    - 2.5 MW  $\rightarrow$  O(0.1) % losses
- Technology limits
  - Heat load on target
    - Moving targets
    - Liquid metal targets
  - Heat load on injection foil
    - Foil "strips" H<sup>-</sup> into H<sup>+</sup>
    - Laser stripping is an R&D topic

### Beam quality & systematics

- Need to consider systematic errors
  - Ratio of number/species of neutrinos at source vs energy
- Improve knowledge of v source composition & energy
- Measure pion distribution from target
  - E.g. HARP, NA61/SHINE
- Measure flux before oscillation
  - E.g. Near detector
  - E.g. DUNE-PRISM
    - Move ND off-axis(!)
    - Scan the neutrino energy distribution
    - Check reconstruction matches expected energy distribution
  - Will T2HK and DUNE be systematics limited?
- Improve physics models  $\rightarrow$  improve detector resolution
  - Enubet
  - nuSTORM





# ENUBET (1)



- Slowly extract protons to a target
- Produce pions and kaons
- Monitor decays of kaons in the decay tunnel
- Either pulsed extraction or CW extraction
  - 1 kaon every 70 ps or every 1 ns



# ENUBET (2)

- Identify positrons from kaon decay
  - Understand v<sub>e</sub> rate and beam kinematics
  - Estimate pion rate  $\rightarrow \nu_{\mu}$
- Map individual kaons to neutrinos using time coincidence
  - Understand individual neutrino kinematics







Science and Technology Facilities Council

### Neutrinos from Muons - nuSTORM



### NuSTORM

- Lifetime of muons is "long"  $\rightarrow$  store muons while they decay
  - Very pure, well characterised beam
  - Very good knowledge of neutrino distribution from muon decay
- Measure number of neutrino interactions in different materials
- Seek to understand neutrino cross-sections
  - Drill down systematic uncertainty in the neutrino distribution
- Also BSM physics
- Also nuclear physics



### **Alternative sources**

Neutrinos arise from radioactive decay



- Note lifetimes are time dilated in the lab frame
- Alternative sources can be chosen to improve beam quality





- Upgrade to production beam
- Add momentum selection chicane after the target
  - Most kaons decay
  - Pion charge/momentum selection
  - Pion beam line instrumentation







Science and Technology Facilities Council

### Beta beams



- Beta decay produces electron + electron neutrino
  - Generate (anti-)ν from (inverse)β decay
  - E.g. accelerated <sup>6</sup>He and <sup>18</sup>Ne



## **Neutrino Factory**

#### Neutrino Factory (NuMAX)



- How to improve precision further?
- Take the nuSTORM concept further
  - Enhanced muon capture
    - Use solenoid and beam cooling
  - Accelerate muons in a linac
  - Storage ring
- Much improved source
  - Tunable neutrino energy (with appropriate baseline)



### **Neutrinos from Muon Collider**



• Neutrino beam is narrow and very high energy  $\rightarrow$  pile up

### Timeline

- For intermediate complexity facility e.g. nuSTORM
  - Establish project physics reach, funding, etc
  - Magnet prototypes complicated SC dipoles
  - Magnet production
  - Excavate tunnel
  - Install equipment
  - Commission
- Need to establish a plan in this ESPPU "cycle"
  - Opportunities will start disappearing through inaction



Science and Technology Facilities Council

### Conclusion

- Not clear there is a path for superbeams beyond next generation
- Time required to deploy a new facility is ~25 years
- Need to establish a plan in this ESPPU "cycle"
  - Opportunities will start disappearing through inaction

