# High-energy e<sup>+</sup>e<sup>-</sup> colliders

A reminder of options on the table, differences in main parameters and how this influences physics opportunities...

...intentionally, there is no mention of cost, timescale, sustainability *etc.* This meeting is focused on physics opportunities, not project choice !

Guy Wilkinson UK EPPSU meeting, Durham 23/5/24

### e<sup>+</sup>e<sup>-</sup> Higgs factories – a wealth of choice



### e<sup>+</sup>e<sup>-</sup> Higgs factories – a wealth of choice

#### Technologically mature projects, with well-understood physics capabilities CEPC ct Linear Collider (CLIC) 380 GeV - 11.4 km (CLIC380 1.5 TeV - 29.0 km (CLIC1500) e- Main Linac 3 0 TeV - 50 1 km (CLIC 300 e+ Source Physics Detectors CLIC Beam delivery system (BDS) e- Source e+ Main Linac CLIC3000 ILC FCC-ee $C^3$ C3 - 8 km Footprint for 250/550 GeV Main Linac RTML )eliver Polarized Damping Ring Electron Source e-Damping Ring HALHF Positron Source More recent proposals needing further study

## **Physics considerations**

What differences exist between physics opportunities at circular & linear machines?

#### Circular vs linear

#### Circular

Higher luminosities for Z, WW and ZH. No operation above ttbar

Transverse polarisation allows for precise beam-energy calibration (important for Z and W EW physics)

Longitudinal polarisation more challenging (but in CEPC baseline, and will be considered by FCC)

#### Linear

Possible to operate at energies well above ttbar threshold

Longitudinal polarisation generally available (useful for Z and Higgs physics)

Options exist with much smaller footprint that circular machines

## **Physics considerations**

What differences exist between physics opportunities at circular & linear machines?

- Circular vs linear
- Higgs physics capabilities

Broadly similar at all machines, but takes a little longer at linear colliders.



FCC-ee can also probe electron Yukawa, whereas linear colliders with high-energy upgrade can probe top Yukawa & Higgs self-coupling. But none of these options are in baseline plans.

## **Physics considerations**

What differences exist between physics opportunities at circular & linear machines?

- Circular vs linear
- Higgs physics capabilities
- Other physics capabilities

Very high luminosity at lower energies, and resonant depolarisation, give circular colliders exciting opportunities in electroweak & flavour physics.

High-energy upgrades to linear colliders would access the TeV regime.

### ILC – current baseline

Well-established and mature project. Current baseline for first stage is descoped from 500 GeV machine proposed in 2013 <u>TDR</u>.



## ILC – upgrade options

#### Extendable to higher luminosity, and higher energies (and also Z-pole operation).

| Quantity                       | Symbol                           | Unit                              | Initial | $\mathcal{L}$ Upgrade | Z pole           | Ul        | pgrades |        |
|--------------------------------|----------------------------------|-----------------------------------|---------|-----------------------|------------------|-----------|---------|--------|
| Centre of mass energy          | $\sqrt{s}$                       | GeV                               | 250     | 250                   | 91.2             | 500       | 250     | 1000   |
| Luminosity                     | $\mathcal{L} = 10^{34}$          | $\mathrm{cm}^{-2}\mathrm{s}^{-1}$ | 1.35    | 2.7                   | 0.21/0.41        | 1.8/3.6   | 5.4     | 5.1    |
| Polarization for $e^{-}/e^{+}$ | $P_{-}(P_{+})$                   | %                                 | 80(30)  | 80(30)                | 80(30)           | 80(30)    | 80(30)  | 80(20) |
| Repetition frequency           | $f_{ m rep}$                     | Hz                                | 5       | 5                     | 3.7              | 5         | 10      | 4      |
| Bunches per pulse              | $n_{ m bunch}$                   | 1                                 | 1312    | 2625                  | 1312/2625        | 1312/2625 | 2625    | 2450   |
| Bunch population               | $N_{ m e}$                       | $10^{10}$                         | 2       | 2                     | 2                | 2         | 2       | 1.74   |
| Linac bunch interval           | $\Delta t_{ m b}$                | $\mathbf{ns}$                     | 554     | 366                   | 554/366          | 554/366   | 366     | 366    |
| Beam current in pulse          | $I_{\rm pulse}$                  | $\mathbf{m}\mathbf{A}$            | 5.8     | 8.8                   | 5.8/8.8          | 5.8/8.8   | 8.8     | 7.6    |
| Beam pulse duration            | $t_{\rm pulse}$                  | $\mu s$                           | 727     | 961                   | 727/961          | 727/961   | 961     | 897    |
| Average beam power             | $P_{\rm ave}$                    | MW                                | 5.3     | 10.5                  | $1.42/2.84^{*)}$ | 10.5/21   | 21      | 27.2   |
| RMS bunch length               | $\sigma^*_{ m z}$                | $\mathbf{m}\mathbf{m}$            | 0.3     | 0.3                   | 0.41             | 0.3       | 0.3     | 0.225  |
| Norm. hor. emitt. at IP        | $\gamma \epsilon_{ m x}$         | $\mu { m m}$                      | 5       | 5                     | 5                | 5         | 5       | 5      |
| Norm. vert. emitt. at IP       | $\gamma \epsilon_{ m y}$         | nm                                | 35      | 35                    | 35               | 35        | 35      | 30     |
| RMS hor. beam size at IP       | $\sigma^*_{\mathbf{x}}$          | $\mathbf{n}\mathbf{m}$            | 516     | 516                   | 1120             | 474       | 516     | 335    |
| RMS vert. beam size at IP      | $\sigma_{\rm v}^*$               | $\mathbf{n}\mathbf{m}$            | 7.7     | 7.7                   | 14.6             | 5.9       | 7.7     | 2.7    |
| Luminosity in top $1\%$        | $\mathcal{L}_{0.01}/\mathcal{L}$ |                                   | 73%     | 73%                   | 99%              | 58.3%     | 73%     | 44.5%  |
| Beamstrahlung energy loss      | $\delta_{ m BS}$                 |                                   | 2.6%    | 2.6%                  | 0.16%            | 4.5%      | 2.6%    | 10.5%  |
| Site AC power                  | $P_{\rm site}$                   | MW                                | 111     | 138                   | 94/115           | 173/215   | 198     | 300    |
| Site length                    | $L_{\rm site}$                   | $\mathbf{km}$                     | 20.5    | 20.5                  | 20.5             | 31        | 31      | 40     |

### FCC-ee

#### 91 km tunnel, four IPs, $E_{CM}$ running points from Z pole to 365 GeV.



### FCC-ee: baseline run plan

FCC-ee will enable precision studies of all the heavy particles in the SM.



Other running points, e.g. 125 GeV for electron Yukawa measurement, under study.

### Meanwhile in China...

CEPC is a broadly similar project to FCC-ee (albeit with interesting differences).





(More information available from <u>website</u> of recent Marseille workshop)

## Compact Linear e<sup>+</sup>e<sup>-</sup> Collider (CLIC)

High energy e<sup>+</sup>e<sup>-</sup> at CERN for post HL-LHC era, *i.e.* an alternative to FCC.

Novel and unique two-beam accelerating technique, based on high-gradient warm RF.

#### First stage:

- 380 GeV
- 11 km
- 20,500 cavities

Can be upgraded up to 1.5, 3 TeV.



Extensively studied (CDR 2012), with substantial inputs to last EPPSU.

## Cool Copper Collider (C<sup>3</sup>)

Driving concept: improvements in normal-conducting RF cavities since the adoption of SCRF as technology for ILC, a decision made ~20 years ago.



Big idea: cool copper to 80 K. Here the conductivity is higher, which reduces the resistive heating that cases defects, and allows for higher gradients (~100 MeV/m).

#### Hybrid, asymmetric, linear Higgs factory (HALHF)

Plasma-wakefield acceleration (PWA) very promising technology for producing GV/m gradients, with high beam quality and power. However, this works much better for electrons than for positrons. So, why not build an asymmetric collider, with high-energy PWA-driven e<sup>-</sup> beam, and conventional, lower energy e<sup>+</sup> beam ?



[Foster, D'Arcy and Lindstrøm. New J. Phys. 25 (2023) 093037, Lindstrøm, D'Arcy and Foster arXiv:2312.04975]

| Machine parameters            | Unit             | Value                 |
|-------------------------------|------------------|-----------------------|
| Centre-of-mass energy         | GeV              | 250                   |
| Centre-of-mass boost          |                  | 2.13                  |
| Bunches per train             |                  | 100                   |
| Train repetition rate         | Hz               | 100                   |
| Average collision rate        | kHz              | 10                    |
| Luminosity                    | $cm^{-2} s^{-1}$ | $0.81 \times 10^{34}$ |
| Luminosity fraction in top 1% | 57%              |                       |
| Estimated total power usage   | MW               | 100                   |

Significant R&D required for PWA.