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K (1, Tia,0) = (yle o) = [ " pyeiff vt
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Change Variables: v > v+ 6y = K =0 — (U \ |\I!> =0

Classical Physics is an identity of Quantum Mechamcs

Guess quantum theory based on observed classical dynamics
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Particle Mechanics Yukawa Theory
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Do not integrate over them in the path integral
Gauge Theories?
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Classical Gauge Theories

Electromagnetism Gravity
S = /d% (—F°+ A, J* + L)) S = /d4:1:\/—g (R4 L (0,0u0))
Dynamical Equations
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Constraint Equations
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=0 = V-E=J 90 > Gop = 1oy
But
0L
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Treat as parameters
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How?
A)=|A+ Va)
G=V.E—-J°

Generates spatial gauge transformations
et [ 2G| 4) = | A + Va)

Demand State that doesn’t change under G

GlAp) =0 = !/ @7CGo) ALY — | Ap)

State obeys Gauss’s law

H,G| =0 = Remain in same eigenspace
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State evolves, looks like a world with static background charge Jp(x)

Massless Photon
H invariant under A-> A + da

No new degree of freedom - just a different state of electromagnetism
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Classical Limit

Dynamical Equations
d| ) OF L
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Constraint Equation
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No new degree of freedom - just a different state of electromagnetism
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Operator Choice

Do we need to set Ao = 07?

Choose Ao to be any c-number function B(t, x)
1 S o
H = /d?’aza (B2 + B?) + Ay (V.E—J°) + A.J + H,
Does the physics depend on B(t, x)?

AO%AO+6’M:O,E%Z+V@

Maps to Weyl gauge Hamiltonian

More general choices of Ag also possible - doesn’t matter in linear quantum mechanics



Lagrangian
Classical Mechanics: L, H are classical functions related by Legendre Transformations

Quantum Mechanics: Hamiltonian defines differential equation, Lagrangian a solution

RI0)
ot

Y(T)=y .

— H| (1)) K (y.T:2.0) = (yle— AT |g) = / Dry e S dt L(z)

v(0)=x




Lagrangian
Classical Mechanics: L, H are classical functions related by Legendre Transformations

Quantum Mechanics: Hamiltonian defines differential equation, Lagrangian a solution

RI0)
ot

Solutions require boundary condition - Lagrangian can depend on it

G|Ap) = Jp (x) |Ap)

914, (1)
ot

— v(T)=y T
= H|W (1)) K (y,T;z,0) = (yle™ \x>=/ Dyetlo dt L)

v(0)=x

— H‘Ap (t)>



Lagrangian
Classical Mechanics: L, H are classical functions related by Legendre Transformations

Quantum Mechanics: Hamiltonian defines differential equation, Lagrangian a solution

RI0)
ot

Solutions require boundary condition - Lagrangian can depend on it

G|Ap) = Jp (x) |Ap)

914, (1)
ot

Restrict evolution to just this sector

LDA,JA

Y(T)=y .

— H| (1)) K (y.T:2.0) = (yle— AT |g) = / Dry e S dt L(z)

v(0)=x

— H‘Ap (t)>



Lagrangian
Classical Mechanics: L, H are classical functions related by Legendre Transformations

Quantum Mechanics: Hamiltonian defines differential equation, Lagrangian a solution

RI0)
ot

Solutions require boundary condition - Lagrangian can depend on it

G|Ap) = Jp (x) |Ap)

914, (1)
ot

Restrict evolution to just this sector

LDA,JA

Y(T)=y .

— H| (1)) K (y.T:2.0) = (yle— AT |g) = / Dry e S dt L(z)

v(0)=x

— H‘Ap (t)>

Not a parameter, identifies sector of Hilbert space. Similar to 0
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Quantum General Relativity

Qv = — Ndt* + N,dtdx gijda:idxj

L=+—gR
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Manifold: Rx X ON ON;

oL
Tii = —— £ 0
7 09 j
g; are dynamical

What todo about N and N;?
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Quantum General Relativity
H = / >z (NH + N'H;)

Classical Hamiltonian Vanishes on Shell
Physics does not depend on N or N;

Guesses
H =20 H|U) =0, H;|T) = \|D)
Physics Does Not Exist State does not change in time or space
Ehrenfest’'s Theorem

(H) = 07
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General Relativity
g = —N?dt* + N;dtdz" + g;;dz'dz’
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Treat N, N; as parameters. So pick them:N=1,N; =0

1 1 .
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Propose
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Hamiltonian invariant under spatial co-ordinate transformations.
Theory of massless gravitons
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Constraints
OV (1) _ HIW (£)) — (W (1) [H]Y (1)) _

ot dt
Initial State: (¥ (0) |H|¥ (0)) =0 = (¥ (¢) |H|¥(t)) =0

Classical GR:  G;; = 1;; Withinitial: G, (0) = Tp, (0)
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Constraints
d(W (t) |H|W (t))

O (1) _
i = H|V () = T — (0

Initial State: (¥ (0) |H|¥ (0)) =0 = (¥ (¢) |H|¥(t)) =0

Classical GR:  G;; = 1;; Withinitial: G, (0) = Tp, (0)

Whatif (W (0) |H|W (0)) =J(x) #07?
Similar to Electromagnetism, can show:
G =T + T,

T, =0,Tp, #0

Evolves like cold dark matter - no new particle, just a state of gravity
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Quantizing Gauge Theories

SEM — /dt[’ («’LY, fIv AO) SGR — /dt,C (gZ]7 gzgv g(),u)
Analogy with Yukawa: Treat Ao, 2o, as some unknown but fixed operators
0S5 0S5
Not d.o.t. > \ 0, \ 0
8A0| ) 7# agw\ ) #

Can show that for these states, still get massless photon and graviton - the only physical
aspect of gauge invariance we actually care about

Further, by suitable redefinitions, can show that these choices only influence
physics at the level of violations of constraints with “dark” backgrounds

“Dark Matter/Charge” : New cosmological observables



Backup



Boundary Operator

)
= = (Hy + Hp)|¥)
Ho|¥) = 0
d(V| 0|V
O (it + Hp. 0] w) = (¥][Hy, O]W) +(¥|[Hp. O]
_f_/

0

[Local QFT - O needs to commute with Hpg

In any case, Hg only knows about ADM mass - not totality of local dynamics



State Over All Time
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D (1) = ) aje”Pj)
J
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J J J
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Homogeneous Universe

Study homogeneous space-times in General Relativity

Guv = —IN (t)° dt? + a (t)° (dazQ dy” dzz)

Couple this to homogenous sources of matter, for e.g. rolling scalar field ¢

S:/dtﬁ (a(t),a(t),N(t),6(t),6 ()

Physical Degrees of freedom: a(t), ¢(t)
Gauge Freedom: N(t)

Classical Equations?

2 FRW +1Scalar Field

Gauge Symmetry: Time Reparameterization invariance



Classical Equations
S = [t (a(0).a(6), N (5).6(0). ()

05 _ 0 — 9, 8_5 oL _ Die. ([ 4... =0 2nd FRW Equation
da da da a

0S 0L 0L ’

i 0 — 0, (8_¢> 5 = 0 i.e. (gb 4= O) Klein Gordon

0S 0L , 0\ Ist FRW Equation
8—N:O:>8—N:Ol.e. -] +---=0 (Hubble)



Classical Equations
S = [t (a(0).a(6), N (5).6(0). ()

05 —0 — 8, 8_5 0L _0ie (& L= 2nd FRW Equation
Oa oa oa a

0S5 oL 0L . ; .

96 0 = 0 (8—¢) 96 0 1.e. (qb + - = O) Klein Gordon
aS 0 oL 0 ; 0\ B Ist FRW Equation

Classical Solutions are over-constrained (3 equations for 2 variables)

Solve: Klein Gordon + 2nd FRW with boundary condition from Ist FRW
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Quantum Theory

Guw = —N ()7 dt?

a(t)° (dz”

dy2

sz)

Physical Degrees of freedom: a(t), ¢(t)
Gauge Freedom: N(t)

S:/dtﬁ (a(t),a(t),N(t),6(t),6 )

[, = aé,qu — 84
oa 0o
My = 2% — g

ON

Quantize These

What to do with N?
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Hamiltonian Construction

S:/dtﬁ (a(t),a(t),N(t),6(t),6 )

Construct Canonical Hamiltonian from this Lagrangian

Hy = N Hy (a7Ha7¢7 qu)

Whatis N? Different values of N vield different Hamiltonians
Different physics? Gauge symmetry?

N is like Ao - just pick some ¢c-number function
But still, different choices of N yield different Hamiltonians!

Know: N doesn’t affect physics
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Schrodinger Equation

Olx (@)
Ot

N is a c-number, different choices of N yield different Hamiltonians

= NHoy|x (1))

-1 9|x (1))

i 5 = Ho|x (%)) dt = Ndt

Different choices of N correspond to different choices of time co-ordinate.

What are the classical equations of motion?
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Path Integral
szjdw (a(t),a(t).N (1).6(1).6 (1))

Physical Degrees of freedom: a(t), ¢o(t), Gauge Freedom: N(t)

To get finite path integral, need to fix N(t)

N = 0, enforce via Lagrange multiplier

DéDaDN D) e Ji=ti (£=AN)

P(t2)=0¢f,a(t2)=ayf,N(t2)=N2
(6,07 (t2:t1) [65,5) = [
¢

(t1)=¢i,a(t1)=a;,N(t1)=Ni

N =0 = N (ts) = Ny, N (t1) = Ny
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Path Integral

P(t2)=¢f,a(t2)=ay

(s ar|T (to;t1) [Pisai) = / DéDaet Ji=ii (£(No))
d(t1)=¢q,a(t1)=a;

Can show that path integral over a(t), ¢(t) are finite

<¢f7 @f|T (t2§ tl) |¢“ ai> — P (9 ay,t2;0i,ai,t1;No)

Path Integral explicitly depends upon random choice No

But, redefine time to eliminate physical effects

Action invariant under time reparameterization - fix end points, can pick arbitrary
time parameterization in the middle
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¢
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Schwinger Dyson Equations

P(t2)=¢y,atz)=as,N(t2)=N2 . pt=to .
/ D¢DCLDND)\€Z ft:tl (ﬁ—)\N)
¢

(@fsar|T (t25t1) |Pi, ai) =
(tl):qb,,;,a(tl):ai,N(tl):Nl

»—o+00,a —a+0a, N - N+oN

oL 0L 2nd FRW Equati
T OL ) — n quation

Heisenberg Picture <\If ‘ 0, ( 5’; ) 0L ‘ \I/> — 0 Klein Gordon
op/) 0o

O\ oL Tells you how A evolvesin the
It ON | Y > — 0 pathintegral - not Ist FRW

(V|
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Consequence of Schrodinger Equation

Olx (1)) Ho|x (t))

= ()
ot dt

— NHoly (1)) — X

Identity, similar to Ehrenfest and Schwinger-Dyson

CanShow:  (x (1) [Holx (1)) = (x (1) [a® Do x (1)

d{x|a® 5% |x)

Thus:
us g

= (

This is almost the 1st FRW equation - but not quite.
Ist FRW equation only satisfied up to overall constant
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Inital State
a:A%—AT,Ha:Z’(A—AT) ¢:B—|—BT7H¢:7;(B_BT)

Create quantumstatesof a, ¢

x) = f (A, AT, B,B") |0 >

0L oL
3 _ . d{x|a’ 55 1x)
Choose (x|a 6’N‘X> = (0 = 1st FRW holds ( - 0)
oL
Can (x|a” == |x) # 07
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Consequence of Schrodinger Equation

aLH
oN X

= () > 1st FRW holds

oL
Can (x|a”5=x) # 07
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In classical physics, we demand 2 FRW +1KG equation to hold - so we
restrict initial conditions to obey 1st FRW
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Consequence of Schrodinger Equation

aLH
oN X

= () > 1st FRW holds

oL
Can (x|a”5=x) # 07

Choose (x|a”

In classical physics, we demand 2 FRW +1KG equation to hold - so we
restrict initial conditions to obey 1st FRW

Quantum Dynamics

Olx (@)
ot
First order ODE - no issue with time evolving

oL
aNbO#O

= NHp|x (t))

(x|a*



Violating 1st FRW
oL

X) = ¢

. Olx (1))
Quantum Dynamics: ¢ —

(x|a*




Violating Ist FRW
oL

(x|a*

0|y (T
Quantum Dynamics: ¢ ‘Xai ) _ N Holx (1))

Implied Classical Dynamics

(x |0 (Z—g) Zg ) =0 Klein Gordon

(X|O (g—s) gi x) =0 2nd FRW Equation
0L C Ist FRW but with “Dark”

<X‘@N‘X> - <X|$‘X> Matter



Quantum “Dark” Matter

0L
(x|a* X)) =¢

a=A+ AT, =i(A-A")  ¢=B+B"Ily=i(B- B

Create quantum statesof a, ¢
Quantum Dynamics: Just 1 first order ODE (Schrodinger)
No reason to constrain initial state!

Failure manifests classically as “dark” matter - though no real particle
excitation there. Conservation implies super-selection sector.

Can be positive or negative!



Wheeler deWitt
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Gauge Invariance
A) = |A+ Va)

Dirac:

Restrict to states that are invariant under gauge transformations

G generates the gauge transformation

G|Ap) =0
Gauge symmetry of General Relativity is space-time translations

H generates time translation

H|W) = 0

Universe is In an energy eigenstate



Conclusions



Conclusions
S— [dte (av).a®).N(0).6().6(0))
Opinion A OpinionB

Olx @)
Ot

= N Hol|x (t)) H|¥) =0



Conclusions

S:/dtﬁ (a(t),d(t),N(t),¢(t),$(t))

Opinion A

Olx @)
Ot

= NHoy|x (2))

Pick N
Redefine time to get physics
independent of N

Ist FRW Equation only true up
to constant

Quantum “Dark” Matter

OpinionB

H\V) =0
Obey’s Dirac’s criteria

Only static states...no time!



The Classical Equations of Motion

Yukawa Theory
S D /d%A@:) VA

0SS
Do Not — =
O O@)\ 0

Do Not ¢@W|y) = 0

Why

oL
D)

g

0

T\

rnot d.o.f.

Gauge Theory
S=/dw(a(t),a<t>,N<t>,¢<t>,<b<t>)
TN — a—ﬁ — O
ON
N notd.o.f.

But:
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Quantizing Gauge Theories
Swrs = / dtL(a(t),a(t),N(t)  Sem= / ate (A, A, A)  Son = / at £ (gij, Gij» Gop)
Analogy with Yukawa: Treat N, Ao, gon as some unknown but fixed operators

0S5 0S5 0S5

Not d.o.f. — —— 0, 0,
X) 7 aAObO - o

IN x) # 0

Can show that for these states, still get massless photon and graviton - the only
physical aspect of gauge invariance we actually care about

Further, by suitable redefinitions, can show that these choices only influence
physics at the level of violations of constraints with “dark” backgrounds
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General Relativity
Guv = Goudtdx" + g, dxtdx’

oo, do not have conjugate momenta - fixed c-number functions

Quantum Mechanics Guarantees:
Gij =T

Classically:
Gpv — Tuv T H}W

With: H,,v = Ho,
V“H,, =0

New cosmological observables



Quantum Gauge Theories
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(e.g. Electromagnetism) 0AH
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Quantum Gauge Theories

Classical Field Theory 05

(e.g. Electromagnetism) SAH !
Quantum Field Theory
_ w tS[A] L 0S5 o
Z = | DA"e — 04 = | DA" 0A" =0
0AH

Need to Gauge Fix to define Path Integral

7 = /DAMSMA] — 07 = /DA“ (ﬁgﬁ{) SA* = ()




Quantum Gauge Theories

Classical Field Theory

(e.g. Electromagnetism)

/ Quantum Field Theory

Not the Same [ = /DA“eiS[A] — 0/ = /DA““ ( 05 ) A" = ()
29999999 0AH

Need to Gauge Fix to define Path Integral
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Quantum Gauge Theories

O|x (t))
— H |y (t
= X (1))
Dynamical Equation
Can only imply: 5S>:o — <8E VxB-—J)y=0
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Constraint Equations?

Imposed by hand - does not follow from Schrodinger
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Quantum Gauge Theories

O|x (t))
— H |y (t
= X (2))
Dynamical Equation
Can only imply: 05 — 0 — OF VxB-—J)y=0

<5A73> < ot

Constraint Equations?

Imposed by hand - does not follow from Schrodinger

—

(ﬁ-E—J()) x) =0
First order ODE - can time evolve states that violate constraint

Does anything go wrong? i.e. massless photon?
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Electromagnetism
A, = Aodt + A;dx’

Ao does not have a conjugate momentum - fixed c-number function

Quantum Mechanics
(Gauss’s Law) 8'Lx J 0 0, MF HY — J i (Ampere’s Lawf
000, F"° =0

Classically

0, F'" =J" +J}

With: J! = (JO (:E),O,(),O) — %(Jg) =0

New cosmological observables



Backup
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Quantizing Gauge Theories

Yukawa Theory Gauge Theory
5 /d%A(x) PTD s [are (a ).,V 0),00).60)
0S5 iy = 2
Do Not X 0 NN U
Do Not ¢TW|y) = 0 N not d.o.f.
Why? But:
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Quantizing Gauge Theories

Yukawa Theory
S D /d%A@:) VA

0SS
Do Not — =
O O@)\ 0

Do Not ¢@W|y) = 0

Why

oL
D)

g

0

T\

rnot d.o.f.

Gauge Theory
S=/dw(a(t),a<t>,N<t>,¢<t>,a5<t>)
TN — a—ﬁ — O
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N notd.o.f.

But:
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Classical and Quantum Gauge Theories

Classical Field Theory 0.5 — 0
(e.g. General Relativity)  § g,uu

Quantum Field Theory
[ = /Dg‘“’eis[g] — 0/ = /Dg“”( 05 )59“” =0
0 gHv

Need to Gauge Fix to define Path Integral

Z:/Dg“”eisgf[g] — 5Z:/Dg”” (gsif)(SgW:O /
g 14




Classical and Quantum Gauge Theories

Classical Field Theory

(e.g. General Relativity)

/ Quantum Field Theory

Not the Same |
1ddd 4 7 = / Dgtv el — §7 = / Dg‘“/(

Quantum
Supremacy




Hamiltonian Construction

II, = 8€,H¢ — 6)4 Quantize These
0a 0o

a, o) = [¢, 11y =i

a:A%—AT,Ha:i(A—AT) ¢:B—|-BT7H¢:7;(B_BT)



Hamiltonian Construction

11, = 8§7H¢ — 84 Quantize These
0a 0o

:a, Ha:

@, 11| =i
a:A%—AT,Ha:Z’(A—AT) ¢=B—|-BT;H¢:7;(B_BT)

Fully non-linear General Relativity - no “free” theory with “free” kinetic term

But, can still construct Hilbert space with Fock states of A, B-these are
operator level statements independent of kinetic terms of the theory

Al0) =0, AT|0) = |1) etc.



Electromagnetism



Outline

1. Electromagnetism
2. Mini Superspace
3. General Relativity
4. Cosmological Consequences

5. Conclusions
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Do we need Hilbert space Restriction?

All we care about is we want a causal theory with a massless photon
Ag =
1 — —
H = /d3x§ (E°+B*)+A.J+H,

W (1)) = e T (0)) = (1 + 1 Ht - | ) W (0))

Want to know if there is a photon mass operator at some order

A—-A+Va = H—H
Forbids photon mass: A.A

Hilbert space restriction not needed - sufficient Hamiltonian symmetry

No Gauss Law since no restriction on initial state
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Quantization of Electromagnetism

H = /d%% (E2+ B + Ay (V.E —J°) + A.J + H;

Opinion A Opinion B
(Dirac) (Team B)
Gauge Invariance of States Massless photon
A) = |A+ Va) Pick Ao (e.g. any c-number function)

Requires Symmetry of Hamiltonian
G|Ap) = Jp (z) [Ap)

A— A+ Va > H —- H

Exist states of EM with Gauss law violation
Theory of massless photon, background charge - no new degrees of freedom




