New Developments in Neutrino (Astro) Physics

Joachim Kopp (CERN & JGU Mainz) PASCOS 2025 • Durham • 21 July 2025

-

JOHANNES GUTENBERG UNIVERSITÄT MAINZ

JGU

solar neutrinos ★ stellar evolution

solar neutrinos ★ stellar evolution

supernova neutrinos ★ nucleosynthesis ★ matter under extreme conditions ★ stellar evolution

solar neutrinos ★ stellar evolution

high-E neutrinos ★ origin of cosmic rays ★ AGNs, blazars, MW

supernova neutrinos ★ nucleosynthesis ★ matter under extreme conditions ★ stellar evolution

solar neutrinos ★ stellar evolution

high-E neutrinos ★ origin of cosmic rays ★ AGNs, blazars, MW

cosmology ★ early Universe supernova neutrinos ★ nucleosynthesis ★ matter under extreme conditions ★ stellar evolution

solar neutrinos \star stellar evolution

high-E neutrinos ★ origin of cosmic rays ★ AGNs, blazars, MW

cosmology ★ early Universe supernova neutrinos ★ nucleosynthesis ★ matter under extreme conditions ★ stellar evolution

neutron stars ★ cooling common-envelope systems

 supernova neutrinos
 nucleosynthesis
 matter under extreme conditions
 stellar evolution

neutron stars
 * cooling
 * common-envelope
 systems

neutron stars
 * cooling
 * common-envelope
 systems

Neutron Stars

Image: Gendreau et al.

Joachim Kopp — New Developments in Neutrino (Astro)Physics

□ kinematically forbidden except in the heaviest stars
 □ condition $p_{Fn} < p_{Fp} + p_{F\ell}$

Joachim Kopp — New Developments in Neutrino (Astro)Physics

□ kinematically forbidden except in the heaviest stars
 □ condition $p_{Fn} < p_{Fp} + p_{F\ell}$

Modified Urca Processes

□ allowed in all neutron stars

J Q JG U

Joachim Kopp — New Developments in Neutrino (Astro)Physics

Joachim Kopp — New Developments in Neutrino (Astro)Physics

Neutrinos from Neutron Stars in Chemical Equilibrium

Regular modified Urca (in equilibrium) at 10 kpc: 38 cm⁻² sec⁻¹

■ large flux, but low energy ■ so far undetectable

in young neutron stars (T ~ yrs): $E_v \sim 100$ keV, $\phi \sim 10^{41}$ erg/sec

for comparison: diffuse SN neutrinos: ~ 1 cm⁻² sec⁻¹ at E_v ~ MeV

Joachim Kopp — New Developments in Neutrino (Astro)Physics

Neutrinos from Neutron Stars

neutron stars evolve:
spin-down / spin-up
accretion
expulsion of *B*-fields
tidal deformation

Result:
out-of-equilibrium Urca processes
extra neutrinos

JK Opferkuch arXiv:2312.08457

Neutron Stars Away from Thermal Equilibrium

- neutrino flux can be enhanced by several orders of magnitude
- but low energy still precludes detection so far
- opportunities for large low-threshold DM detectors?

Common-Envelope Evolution

- compact star (neutron star, black hole, white dwarf, ...) enters companion star
- significant friction
- gigantic accretion rates (up to 0.1 M_{\odot} /yr for several months)
- outcome: Thorne–Żytkov object or explosion
- crucial for the formation of gravitational wave sources
- rare (0.01 / century 1 / century in our galaxy)
- never observed

Image: Wikimedia Commons

15

- gigantic accretion rates
- only cooling channel is via neutrinos

temperature / density profile

 solve hydrodynamic equations with appropriate boundary conditions (accretion shock discontinuity)

$$\begin{split} \frac{1}{r^2} \frac{\mathrm{d}(r^2 \rho v)}{\mathrm{d}r} &= 0 \ ,\\ \frac{\mathrm{d}(\rho c^2 + e)}{\mathrm{d}r} - \frac{w}{\rho} \frac{\mathrm{d}\rho}{\mathrm{d}r} &= \frac{\varepsilon_{\mathrm{nuc}} - \mathcal{L}_{\nu}}{v} \ ,\\ v \frac{\mathrm{d}v}{\mathrm{d}r} + \frac{GM_{\mathrm{NS}}}{r^2} + \frac{1}{w} \frac{\mathrm{d}P}{\mathrm{d}r} \left(v^2 + c^2 - \frac{2GM_{\mathrm{NS}}}{r} \right) &= 0 \ , \end{split}$$

Esteban Beacom JK 2023

Joachim Kopp — New Developments in Neutrino (Astro)Physics

 solve hydrodynamic equations with appropriate boundary conditions (accretion shock discontinuity)

$$\begin{split} \frac{1}{r^2} \frac{\mathrm{d}(r^2 \rho v)}{\mathrm{d}r} &= 0 \,, \\ \frac{\mathrm{d}(\rho c^2 + e)}{\mathrm{d}r} - \frac{w}{\rho} \frac{\mathrm{d}\rho}{\mathrm{d}r} &= \frac{\varepsilon_{\mathrm{nuc}} - \mathcal{L}_{\nu}}{v} \,, \\ v \frac{\mathrm{d}v}{\mathrm{d}r} + \frac{GM_{\mathrm{NS}}}{r^2} + \frac{1}{w} \frac{\mathrm{d}P}{\mathrm{d}r} \left(v^2 + c^2 - \frac{2GM_{\mathrm{NS}}}{r} \right) &= 0 \,, \end{split}$$

Esteban Beacom JK 2023

continuity equation

energy conservation

Euler equation (in Schwarzschild background)

Joachim Kopp — New Developments in Neutrino (Astro)Physics

temperature / density profile

 solve hydrodynamic equations with appropriate boundary conditions (accretion shock discontinuity)

$$\begin{split} \frac{1}{r^2} \frac{\mathrm{d}(r^2 \rho v)}{\mathrm{d}r} &= 0 \ ,\\ \frac{\mathrm{d}(\rho c^2 + e)}{\mathrm{d}r} - \frac{w}{\rho} \frac{\mathrm{d}\rho}{\mathrm{d}r} &= \frac{\varepsilon_{\mathrm{nuc}} - \mathcal{L}_{\nu}}{v} \ ,\\ v \frac{\mathrm{d}v}{\mathrm{d}r} + \frac{GM_{\mathrm{NS}}}{r^2} + \frac{1}{w} \frac{\mathrm{d}P}{\mathrm{d}r} \left(v^2 + c^2 - \frac{2GM_{\mathrm{NS}}}{r} \right) &= 0 \ , \end{split}$$

Esteban Beacom JK 2023

neutrino emission

- e+e- annihilation (dominant)
 - plasmon decay (subdominant)

Joachim Kopp — New Developments in Neutrino (Astro)Physics

Common-Envelope Evolution

Main detection channel is IBD. No directionality Backgrounds:

- Accidental coincidences
- □ Li-9 from spallation
- NC interactions of atmospheric v
- □ reactor v, CC atmospheric

Esteban Beacom JK 2023

Esteban Beacom JK 2023

www.esa.int

Joachim Kopp — New Developments in Neutrino (Astro)Physics

Sun

Esteban Beacom JK 2023

existing data (~20% of stars)

Sun

www.esa.int

Esteban Beacom JK 2023

near future (> 80% of stars)

existing data (~20% of stars)

Sun

www.esa.int

- CEE detectable almost anywhere in our galaxy
- novel astrophysical neutrino source
- opportunity for discovery

Esteban Beacom JK 2023

near future (> 80% of stars)

existing data (~20% of stars)

Sun

www.esa.int

supernova neutrinos ★ nucleosynthesis ★ matter under extreme conditions ★ stellar evolution

Infalling material produces accretion shock

Neutrino gain region

 $\tau_{\nu} = 1$

The convective region must overcome this pressure to launch an explosion

 $P_{\rm shock} = \frac{1}{2} \rho_{\rm s} v_{\rm ff}^2$

Image: Young 2021

~100-300 km

Melson Janka Marek 2015

neutrino density $> 10^{30}$ cm⁻³ each neutrino "feels" the presence of the other neutrinos (via coherent forward scattering)

$$i\mathcal{A} =$$
 $+$

- neutrino density $> 10^{30}$ cm⁻³ each neutrino "feels" the presence of the other neutrinos

$$i(\partial_t + \vec{v} \cdot \vec{\nabla}_{\vec{r}})\rho_{\vec{r},\vec{p}} =$$

flavour evolution described by von Neumann equation (mean field approach)

 $= \left[H_{\text{vac}} + H_{\text{MSW}} + H_{\nu\nu}, \rho_{\vec{r},\vec{p}} \right]$

- neutrino density > 10³⁰ cm⁻³
 each neutrino "feels" the presence of the other neutrinos
- □ flavour evolution described by von N

$$i(\partial_t + \vec{v} \cdot \vec{\nabla}_{\vec{r}})\rho_{\vec{r},\vec{p}} =$$

vacuum oscillations

$$H_{\rm vac} = \frac{1}{2E} U_{\rm PMNS} M^2 U_{\rm PMNS}^{\dagger}$$

$$H_{\rm MSW} = \sqrt{2}G_{F}$$

- neutrino density $> 10^{30}$ cm⁻³ each neutrino "feels" the presence of the other neutrinos

$$i(\partial_t + \vec{v} \cdot \vec{\nabla}_{\vec{r}})\rho_{\vec{r},\vec{p}} =$$

non-linear equation dynamics highly non-trivial computationally intractable so far a pure Standard Model problem possible quantum entanglement?

flavour evolution described by von Neumann equation (mean field approach)

 $= \left[H_{\text{vac}} + H_{\text{MSW}} + H_{\nu\nu}, \rho_{\vec{r},\vec{p}} \right]$

solution will be crucial for understanding the next Galactic supernova

Cartoon: Reddit u/TheVeryNearFuture

Supernova Neutrinos on a Quantum Computer

(in 2-flavour approximation)

states:
$$|\psi\rangle = |q_1\rangle \otimes |q_2\rangle \otimes \ldots \otimes$$

- However: in the large-N limit, fully entangled N-qubit system should reduce to the standard mean-field picture Friedland Lunardini 2003

highly entangled quantum system calls for simulation on a quantum system basic idea: flavour state of each neutrino mode represented by qubit q_i

Hall et al. 2021, Amitrano et al. 2022, Siwach et al. 2023

$$|q_N\rangle$$

time-evolution via Trotterization (discretisation in t + low-order expansion of $S = e^{i\hat{H}\delta t}$)

our goal here is to demonstrate this explicitly on a quantum computer

Neutrino Qubit Hamiltonian

Neutrino Qubit Hamiltonian

 \Leftrightarrow

$$H_{\text{int}} \propto \begin{pmatrix} 2 & & \\ & 1 & 1 & \\ & & 1 & 1 & \\ & & & 2 \end{pmatrix} \begin{vmatrix} \nu_e \nu_e \rangle \\ |\nu_\mu \nu_e \rangle \\ |\nu_\mu \nu_\mu \rangle$$

$$H = \sum_{k=1}^{N} \vec{b} \cdot \vec{\sigma}_k + \sum_{p < q}^{N} J_{pq} \vec{\sigma}_q$$

Neutrino Qubit Hamiltonian

 \Leftrightarrow

$$H_{\text{int}} \propto \begin{pmatrix} 2 & & \\ & 1 & 1 & \\ & & 1 & 1 & \\ & & & 2 \end{pmatrix} \begin{vmatrix} \nu_e \nu_e \rangle \\ |\nu_\mu \nu_e \rangle \\ |\nu_\mu \nu_\mu \rangle$$

vacuum oscillations

self-interactions

Emergence of the Mean Field Picture

in the large-N limit, fully entangled N-qubit system
 reduces to the standard mean-field picture Friedland Lunardini 2003

Emergence of the Mean Field Picture

in the large-N limit, fully entangled N-qubit system
 reduces to the standard mean-field picture Friedland Lunardini 2003

Implementation on Quantum Hardware

- deployment to IBM QPUs (superconducting transmons)
- severely noise-limited
 - more challenging than Heisenberg / Ising models due to all-to-all interactions
 - smart algorithm design allows implementation on linear qubit chain

IBM Heron r2 (156 qubits)

background

beam (noiseless simulation)

IBM Heron r2 (156 qubits)

background

IBM Heron r2 (156 qubits)

background

beam (IBM Heron r2, Pauli twirling + readout mitigation + zero-noise extrapolation

IBM Heron r2 (156 qubits)

background

beam (IBM Heron r2, probabilistic error cancellation)

IBM Heron r2 (156 qubits)

supernova neutrinos ★ oscillations of SN neutrinos poorly understood ★ playground for quantum computing

neutron stars neutrinos may enable first discovery of common-envelope evolution

Thank You!

JOHANNES GUTENBERG UNIVERSITÄT MAINZ

JGU

Bonus Slides

Departure from Equilibrium

Strategy for calculating rates

- apply Feynman rules + phase space integral
 + Pauli-blocking factors
- phenomenological parameterisation of nuclear matrix element
- neglect angular dependence of hadronic + leptonic matrix element
- □ treat nucleons as non-relativistic
- □ all momenta close to Fermi surfaces
- □ carry out angular integrals
 - carry out energy integrals

(multiple applications of residue theorem)

Friman Maxwell 1979 Yakovlev Levenfish 1995 Yakovlev Kaminker Gnedin Haensel 2000 Shapiro Teukolsky 1983

Neutron Stars Away from Thermal Equilibrium

- very strong dependence on
 departure from equilibrium and on T
 - For muons:

- diffusion (over O(yr) time scales) + decay
- potential source of MeV neutrinos
- would require a mechanisms that drives all NSs in the MW towards
 lower muon abundances
 (~1% over 10⁹ yrs)
- all mechanisms known to us do the opposite

no known mechanism that does this

