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Pulsar timing arrays (PTAs)

Array of pulsars across our MW spiral arm → GW detector of galactic dimensions!

[nrao.edu] [MPIfR]

Pulsars: Highly magnetized rotating neutron stars

• Beamed radio pulses emitted from magnetic N and S poles → cosmic lighthouses
• Stable rotation with periods as short as a few milliseconds → celestial clocks

Look for tiny distortions in pulse times of arrival (TOAs) caused by nanohertz GWs
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2023 PTA results

EPTA: European PTA
CPTA: Chinese PTA
PPTA: Parkes PTA
InPTA: Indian PTA
MPTA: MeerKAT PTA
NANOGrav: North American
Nanohertz Observatory for
Gravitational Waves

18 papers on the arXiv on June 29, 2023
[2306.16213] NANOGrav GWB
[2306.16214] EPTA GWB
[2306.16215] PPTA GWB
[2306.16216] CPTA GWB
[2306.16217] NANOGrav Data set
[2306.16218] NANOGrav Noise model
[2306.16219] NANOGrav New physics
[2306.16220] NANOGrav SMBHBs
[2306.16221] NANOGrav Anisotropies

[2306.16222] NANOGrav Continuous GW
[2306.16223] NANOGrav Analysis pipeline
[2306.16224] EPTA Data set
[2306.16225] EPTA Noise model
[2306.16226] EPTA Continuous GW
[2306.16227] EPTA Implications
[2306.16228] EPTA ULDM
[2306.16229] PPTA Noise model
[2306.16230] PPTA Data set
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Evidence for Hellings–Downs (HD) correlations Γ (ξab)

2306.16213: NANOGrav 2306.16214: EPTA+InPTA

68 pulsars, 16 yr of data, HD at ∼ 3 · · · 4 σ 25 pulsars, 25 yr of data, HD at ∼ 3 σ

2306.16215: PPTA 2306.16216: CPTA

32 pulsars, 18 yr of data, HD at ∼ 2 σ 57 pulsars, 3.5 yr of data, HD at ∼ 4.6 σ
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Common power spectrum
√

∆f Pg (f )
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Power-law parameters A and γ

2306.16213: NANOGrav 2306.16214: EPTA+InPTA

68 pulsars, 16 yr of data, HD at ∼ 3 · · · 4 σ 25 pulsars, 25 yr of data, HD at ∼ 3 σ

2306.16215: PPTA 2306.16216: CPTA

32 pulsars, 18 yr of data, HD at ∼ 2 σ 57 pulsars, 3.5 yr of data, HD at ∼ 4.6 σ
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IPTA comparison

Current world data on the GWB

[IPTA 2309.00693]

• Results from regional PTAs are consistent with each other (1σ posteriors overlap)
• Joint posterior = naive product (properly normalized) of individual posteriors
• Proper data combination and combined data analysis → IPTA DR3
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Interpretations

➊ Supermassive black-hole binaries ➋ GWs from the Big Bang

➊ SMBHBs (realistic)
• No SMBHB mergers directly observed as of yet → data-driven field thanks to PTAs
• Viable explanation, several open questions → unexpected corners of parameter space?

➋ New physics (speculative)
• Logical possibility: PTA signal is not of SMBHB origin or receives several contributions
• Probe and constrain cosmology at early times as well as particle physics at high energies

7



Beyond-the-Standard-Model (BSM) options

➊ Nonmininal cosmic inflation

➋ Cosmological phase transition

• Accelerated expansion before the Hot Big Bang
• Complementarity: PTAs + CMB observations

• First-order transition in the QFT vacuum structure
• Complementarity: PTAs + QCD / dark-sector physics

➌ Enhanced density perturbations ➍ Cosmic defects
• Overdensities that emit GWs and collapse to PBHs
• Complementarity: PTAs + primordial black holes

• Phase transition remnants preserving the old vacuum
• Complementarity: PTAs + grand unified theories

Abbrevations: CMB: cosmic microwave background; GW: gravitational wave; PBH: primordial black hole;
PTA: pulsar timing array; QCD: quantum chromodynamics; QFT: quantum field theory
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Bayesian model comparison

[NANOGrav 2306.16219] [See also: EPTA 2306.16227]

Bayes factor B = Evidence for model M1, P (D|M1)
Evidence for model M0, P (D|M0)

, M0 = {SMBHBs only}

• Many BSM models reach Bayes factors of the order of 10 · · · 100
• Interesting but not conclusive; lots of uncertainties in SMBHB and BSM models

Call to action: Improve modelling on both the astro and the cosmo side!
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Spectral characterization of the signal

Is my BSM model capable of explaining the PTA signal?
• Bayesian fit to the data: PTArcade, ceffyl, ... (minority of all analyses)
• Compare to reference model: constant power law (A, γ), free spectrum (violins)

Metastable cosmic strings

[2308.05799]

Axion domain walls

[2306.17022]

Phase transition

[2306.17205]

However, power-law spectrum just a rough approximation in many models
• Perform Bayesian fit to the data after all: PTArcade, ceffyl, ...
• Compare to more flexible reference model: running power law (A, γ, β)
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Running power law (RPL)

Primordial scalar power spectrum

[PLANCK: 1807.06211] [See also ACT: 2503.14454]

GW power spectrum in the PTA band
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[NANOGrav: 2408.10166]

• CMB: Running of ns tightly constrained, αs = dns/d ln k = 0.0060+0.0055
−0.0055 [P-ACT]

OK to compare your favorite inflation model to constant-power-law (CPL) template (As , ns )

• PTA: Running of γ only loosely constrained, β = dγ/d ln k = 0.92+0.98
−0.91

Better compare your favorite GWB model to running-power-law (RPL) template (A, γ, β)
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RPL posteriors

[NANOGrav: 2408.10166]
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Point and interval estimates based on the 1D marginalized posteriors
Parameter 1D MAP value 95 % HPDI credible interval
Amplitude log10 A(1/10 yr) −14.09 [−14.25, −13.91]
Spectral index γ(1/10 yr) 2.60 [0.98, 4.05]
Running of the spectral index β 0.92 [−0.80, 2.96]
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GWs from inflation

[NANOGrav: 2408.10166]

1 2 3 4
γ (1/10 yr)

-1

0

1

2

3

β

∆N
eff

LVK

CMB

Extrapolate RPL spectrum all the way from CMB to LVK frequencies
• Toy model of GWs from inflation; not realistic, but interesting benchmark
• Large viable parameter space consistent with ∆Neff , CMB, LVK — unlike CPL
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From new physics to a running power law

➊ BSM–RPL map: Local matching ➋ BSM–RPL map: Global matching

➊ Match BSM and RPL spectra locally at fixed pivot frequency (CMB-like approach)
dn ln ΩBSM

d (ln f )n

∣∣∣
fpivot

= dn ln ΩRPL

d (ln f )n

∣∣∣
fpivot

, n = 0, 1, 2 (1)

➋ Match BSM and RPL spectra globally by minimizing the “SNR of their difference”

∆χ
2 = 2T

∫ fmax

fmin

(
ΩBSM (f ; θBSM) − ΩRPL (f ; θRPL)

Ωsens (f )

)2
df (2)

[Kuroyanagi, Chiba, Takahashi: 1807.00786] [Caldwell, Smith, Walker: 1812.07577] [D’Eramo, KS: 1904.07870]
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Map onto the RPL parameter space

[Esmyol, Iovino, KS: 2506.23574]
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Next step: Pullback of the RPL posterior density onto the BSM parameter space
L (D|θBSM) ∝ (PRPL ◦ Φ) (θBSM) (3)

Bayes’ theorem: Combine induced likelihood with priors for BSM model parameters

P (θBSM|D) = [(PRPL ◦ Φ) (θBSM)] π (θBSM)∫
[(PRPL ◦ Φ) (θBSM)] π (θBSM) dθBSM

(4)
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RPL refits: Metastable cosmic strings

Reference model: RPL | BSM–RPL map: Global matching [MSc thesis of David Esmyol]

• Small Hellinger DH →
Excellent agreement

• Coarse resolution of
parameter grid →
Nontrivial posteriors

• Feature, not a bug →
Nontrivial cross-check
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Comparison to simpler refitting techniques

Reference model: RPL | BSM–RPL map: Global matching

Naive refits are sensitive to choice of fpivot

; RPL refits more accurate than CPL refits
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Comparison to simpler refitting techniques

Reference model: RPL | BSM–RPL map: Local matching (fpivot = 0.2 yr−1)

Naive refits are sensitive to choice of fpivot

; RPL refits more accurate than CPL refits
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Comparison to simpler refitting techniques

Reference model: RPL | BSM–RPL map: Local matching (fpivot = 0.3 yr−1)

Naive refits are sensitive to choice of fpivot

; RPL refits more accurate than CPL refits
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Comparison to simpler refitting techniques

Reference model: RPL | BSM–RPL map: Local matching (fpivot = 0.4 yr−1)

Naive refits are sensitive to choice of fpivot

; RPL refits more accurate than CPL refits
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Comparison to simpler refitting techniques

Reference model: RPL | BSM–RPL map: Local matching (fpivot = 0.5 yr−1)

Naive refits are sensitive to choice of fpivot

; RPL refits more accurate than CPL refits
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Comparison to simpler refitting techniques

Reference model: RPL | BSM–RPL map: Local matching (fpivot = 0.6 yr−1)

Naive refits are sensitive to choice of fpivot

; RPL refits more accurate than CPL refits
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Comparison to simpler refitting techniques

Reference model: RPL | BSM–RPL map: Local matching (fpivot = 0.7 yr−1)

Naive refits are sensitive to choice of fpivot

; RPL refits more accurate than CPL refits
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Comparison to simpler refitting techniques

Reference model: RPL | BSM–RPL map: Local matching (fpivot = 0.8 yr−1)

Naive refits are sensitive to choice of fpivot

; RPL refits more accurate than CPL refits
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Comparison to simpler refitting techniques

Reference model: RPL | BSM–RPL map: Local matching (fpivot = 0.9 yr−1)

Naive refits are sensitive to choice of fpivot

; RPL refits more accurate than CPL refits
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Comparison to simpler refitting techniques

Reference model: RPL | BSM–RPL map: Local matching (fpivot = 1.0 yr−1)

Naive refits are sensitive to choice of fpivot

; RPL refits more accurate than CPL refits
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Comparison to simpler refitting techniques

Reference model: CPL | BSM–CPL map: Global matching

Naive refits are sensitive to choice of fpivot; RPL refits more accurate than CPL refits
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Summary: CPL / RPL refits

[Esmyol, Iovino, KS: 2506.23574] [ACT: 2503.14454]
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PTA
• Reference models: CPL (A, γ), RPL (A, γ, β)

• Better match GW spectra globally across full frequency band, e.g., via χ2 minimization

CMB
• Reference models: CPL (As , ns ), RPL (As , ns , αs )

• Match primordial power spectra locally at fixed pivot scale, e.g., kpivot = 0.05 Mpc−1

• OK thanks to slow-roll approximation, but dependence on Ne illustrates deviation from CPL

Best option: Fit BSM models directly to raw PTA / CMB data without CPL or RPL detour
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Free-spec refits

[NANOGrav: 2408.10166]

Another common approach: Refit to free spectral model, i.e., the h2ΩGW “violins”
• More information than in the CPL / RPL model, less than in the full TOA data
• But physically unrealistic; rather expect a smooth spectrum → Compromise?
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Piecewise power-law reconstruction of the GWB signal

[NANOGrav: to appear soon] [PLANCK: 1807.06211]

Bayesian model average (BMA)
• Marginalize over # of power-law segments; weight models by relative evidence
• Refit BSM models to Bayesian periodogramm (“violins”) of the BMA spectrum
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Conclusions

Take-home messages

➊ Lots of exciting BSM models that can be probed at the PTA frontier

➋ Parameter inference at three different levels
• Bayesian MCMC fit to the PTA timing residuals → PTArcade

• Refit to the “violins” of the free spectral model → ceffyl

• Refit to the posterior of the running-power-law (RPL) model → [2408.10166, 2506.23574]

➌ Better match BSM and RPL spectra globally (“no slow-roll approximation”)

➍ Use CMB literature as an inspiration for PTA science, and vice versa

Stay tuned!
And thanks a lot for your attention
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