BSM Physics at the PTA Frontier

Kai Schmitz (NANOGrav New Physics Working Group) University of Münster, Institute for Theoretical Physics PASCOS Conference | Durham University | 22nd July 2025

BSM Model Comparison at the PTA Frontier

Kai Schmitz (NANOGrav New Physics Working Group) University of Münster, Institute for Theoretical Physics PASCOS Conference | Durham University | 22nd July 2025

Pulsar timing arrays (PTAs)

Array of pulsars across our MW spiral arm \rightarrow GW detector of galactic dimensions!

[nrao.edu]

Pulsars: Highly magnetized rotating neutron stars

- Beamed radio pulses emitted from magnetic N and S poles \rightarrow cosmic lighthouses
- Stable rotation with periods as short as a few milliseconds \rightarrow celestial clocks

Look for tiny distortions in pulse times of arrival (TOAs) caused by nanohertz GWs

2023 PTA results

EPTA:	European PTA			
CPTA:	Chinese PTA			
PPTA:	Parkes PTA			
InPTA:	Indian PTA			
MPTA:	MeerKAT PTA			
NANOGrav: North American				
Nanohertz Observatory for				
Gravitational Waves				

18 papers on the arXiv on June 29, 2023

[2306.16213]	NANOGrav	GWB
[2306.16214]	EPTA	GWB
[2306.16215]	PPTA	GWB
[2306.16216]	CPTA	GWB
[2306.16217]	NANOGrav	Data set
[2306.16218]	NANOGrav	Noise mode
[2306.16219]	NANOGrav	New physic
[2306.16220]	NANOGrav	SMBHBs
[2306.16221]	NANOGrav	Anisotropie

[2306.16222]	NANOGrav	Continuous GW
[2306.16223]	NANOGrav	Analysis pipeline
[2306.16224]	EPTA	Data set
[2306.16225]	EPTA	Noise model
[2306.16226]	EPTA	Continuous GW
[2306.16227]	EPTA	Implications
[2306.16228]	EPTA	ULDM
[2306.16229]	PPTA	Noise model
[2306.16230]	PPTA	Data set

$\begin{array}{c} 0.9 \\ \hline 0.6 \\ \hline 0.3 \\ 0.0 \\ 0.3 \\ \hline 0.3 \\ 0.0 \\ 0.3 \\ \hline 0.3 \\ \hline$

2306.16213: NANOGrav

68 pulsars, 16 yr of data, HD at $\sim 3 \cdots 4 \, \sigma$

2306.16215: PPTA

32 pulsars, 18 yr of data, HD at $\sim 2\,\sigma$

2306.16214: EPTA+InPTA

25 pulsars, 25 yr of data, HD at \sim 3 σ

2306.16216: CPTA

57 pulsars, 3.5 yr of data, HD at \sim 4.6 σ

2306.16213: NANOGrav

68 pulsars, 16 yr of data, HD at $\sim 3 \cdots 4 \, \sigma$

2306.16215: PPTA

32 pulsars, 18 yr of data, HD at $\sim 2\,\sigma$

2306.16214: EPTA+InPTA

25 pulsars, 25 yr of data, HD at \sim 3 σ

2306.16216: CPTA

57 pulsars, 3.5 yr of data, HD at \sim 4.6 σ

2306.16213: NANOGrav

68 pulsars, 16 yr of data, HD at $\sim 3 \cdots 4 \, \sigma$

2306.16215: PPTA

32 pulsars, 18 yr of data, HD at \sim 2 σ

2306.16214: EPTA+InPTA

25 pulsars, 25 yr of data, HD at \sim 3 σ

2306.16216: CPTA

57 pulsars, 3.5 yr of data, HD at \sim 4.6 σ

- Results from regional PTAs are consistent with each other $(1\sigma \text{ posteriors overlap})$
- Joint posterior = naive product (properly normalized) of individual posteriors
- Proper data combination and combined data analysis \rightarrow IPTA DR3

Interpretations

1 Supermassive black-hole binaries

0 GWs from the Big Bang

1 SMBHBs (realistic)

- No SMBHB mergers directly observed as of yet ightarrow data-driven field thanks to PTAs
- Viable explanation, several open questions \rightarrow unexpected corners of parameter space?

2 New physics (speculative)

- Logical possibility: PTA signal is not of SMBHB origin or receives several contributions
- · Probe and constrain cosmology at early times as well as particle physics at high energies

1 Nonmininal cosmic inflation

- · Accelerated expansion before the Hot Big Bang
- Complementarity: PTAs + CMB observations

1 Nonmininal cosmic inflation

- · Accelerated expansion before the Hot Big Bang
- Complementarity: PTAs + CMB observations

Osmological phase transition

- · First-order transition in the QFT vacuum structure
- Complementarity: PTAs + QCD / dark-sector physics

1 Nonmininal cosmic inflation

- · Accelerated expansion before the Hot Big Bang
- Complementarity: PTAs + CMB observations

8 Enhanced density perturbations

- · Overdensities that emit GWs and collapse to PBHs
- Complementarity: PTAs + primordial black holes

Osmological phase transition

- · First-order transition in the QFT vacuum structure
- Complementarity: PTAs + QCD / dark-sector physics

1 Nonmininal cosmic inflation

- · Accelerated expansion before the Hot Big Bang
- Complementarity: PTAs + CMB observations

③ Enhanced density perturbations

- · Overdensities that emit GWs and collapse to PBHs
- Complementarity: PTAs + primordial black holes

Osmological phase transition

- · First-order transition in the QFT vacuum structure
- Complementarity: PTAs + QCD / dark-sector physics

Osmic defects

- · Phase transition remnants preserving the old vacuum
- Complementarity: PTAs + grand unified theories

Bayesian model comparison

- Many BSM models reach Bayes factors of the order of $10\cdots 100$
- Interesting but not conclusive; lots of uncertainties in SMBHB and BSM models

Bayesian model comparison

- Many BSM models reach Bayes factors of the order of $10\cdots 100$
- Interesting but not conclusive; lots of uncertainties in SMBHB and BSM models

Call to action: Improve modelling on both the astro and the cosmo side!

Spectral characterization of the signal

Is my BSM model capable of explaining the PTA signal?

- Bayesian fit to the data: PTArcade, ceffyl, ... (minority of all analyses)
- Compare to reference model: constant power law (A, γ) , free spectrum (violins)

Spectral characterization of the signal

Is my BSM model capable of explaining the PTA signal?

- Bayesian fit to the data: PTArcade, ceffyl, ... (minority of all analyses)
- Compare to reference model: constant power law (A, γ) , free spectrum (violins)

Axion domain walls

[2308.05799]

[2306.17022]

[2306.17205]

Spectral characterization of the signal

Is my BSM model capable of explaining the PTA signal?

- Bayesian fit to the data: PTArcade, ceffyl, ... (minority of all analyses)
- Compare to reference model: constant power law (A, γ) , free spectrum (violins)

However, power-law spectrum just a rough approximation in many models

- Perform Bayesian fit to the data after all: PTArcade, ceffyl, ...
- Compare to more flexible reference model: running power law (A, γ , β)

Primordial scalar power spectrum

GW power spectrum in the PTA band

- CMB: Running of n_s tightly constrained, $\alpha_s = \frac{dn_s}{d \ln k} = 0.0060 \frac{+0.0055}{-0.0055}$ [P-ACT] OK to compare your favorite inflation model to constant-power-law (CPL) template (A_s , n_s)
- PTA: Running of γ only loosely constrained, β = dγ/d ln k = 0.92^{+0.98}_{-0.91} Better compare your favorite GWB model to running-power-law (RPL) template (A, γ, β)

[NANOGrav: 2408.10166]

Point and interval estimates based on the 1D marginalized posteriors

Parameter	1D MAP value	95 % HPDI credible interval
Amplitude $\log_{10} A(1/10 \text{ yr})$	-14.09	[-14.25, -13.91]
Spectral index $\gamma(1/10 { m yr})$	2.60	[0.98, 4.05]
Running of the spectral index β	0.92	[-0.80, 2.96]

[NANOGrav: 2408.10166]

Extrapolate RPL spectrum all the way from CMB to LVK frequencies

- Toy model of GWs from inflation; not realistic, but interesting benchmark
- Large viable parameter space consistent with $\Delta N_{\rm eff}$, CMB, LVK unlike CPL

1 Match BSM and RPL spectra **locally** at fixed pivot frequency (CMB-like approach)

$$\frac{d^{n} \ln \Omega_{\rm BSM}}{d \left(\ln f\right)^{n}} \bigg|_{f_{\rm pivot}} = \left. \frac{d^{n} \ln \Omega_{\rm RPL}}{d \left(\ln f\right)^{n}} \right|_{f_{\rm pivot}}, \quad n = 0, 1, 2$$
(1)

2 Match BSM and RPL spectra **globally** by minimizing the "SNR of their difference"

$$\Delta \chi^{2} = 2T \int_{f_{\min}}^{f_{\max}} \left(\frac{\Omega_{\text{BSM}}(f; \boldsymbol{\theta}_{\text{BSM}}) - \Omega_{\text{RPL}}(f; \boldsymbol{\theta}_{\text{RPL}})}{\Omega_{\text{sens}}(f)} \right)^{2} df$$
(2)

[Kuroyanagi, Chiba, Takahashi: 1807.00786] [Caldwell, Smith, Walker: 1812.07577] [D'Eramo, KS: 1904.07870]

[Esmyol, Iovino, KS: 2506.23574]

Next step: Pullback of the RPL posterior density onto the BSM parameter space $\mathcal{L}(D|\theta_{BSM}) \propto (P_{RPL} \circ \Phi)(\theta_{BSM})$

Bayes' theorem: Combine induced likelihood with priors for BSM model parameters $P(\theta_{\rm BSM}|D) = \frac{\left[(P_{\rm RPL} \circ \Phi)(\theta_{\rm BSM})\right]\pi(\theta_{\rm BSM})}{\int \left[(P_{\rm RPL} \circ \Phi)(\theta_{\rm BSM})\right]\pi(\theta_{\rm BSM}) \,\mathrm{d}\theta_{\rm BSM}} \tag{4}$

(3)

Reference model: RPL | BSM-RPL map: Global matching

[MSc thesis of David Esmyol]

- Small Hellinger D_H →
 Excellent agreement
- Coarse resolution of parameter grid → Nontrivial posteriors
- Feature, not a bug → Nontrivial cross-check

Reference model: RPL | BSM-RPL map: Global matching

Reference model: RPL | BSM–RPL map: Local matching ($f_{\rm pivot} = 0.1 \, {\rm yr}^{-1}$)

Reference model: RPL | BSM–RPL map: Local matching ($f_{\rm pivot} = 0.2 \, {\rm yr}^{-1}$)

Reference model: RPL | BSM–RPL map: Local matching ($f_{\rm pivot} = 0.3 \, {\rm yr}^{-1}$)

Reference model: RPL | BSM–RPL map: Local matching ($f_{\rm pivot} = 0.4 \, {\rm yr}^{-1}$)

Reference model: RPL | BSM–RPL map: Local matching ($f_{\rm pivot} = 0.5 \, {\rm yr}^{-1}$)

Reference model: RPL | BSM–RPL map: Local matching ($f_{\rm pivot} = 0.6 \, {\rm yr}^{-1}$)

Reference model: RPL | BSM–RPL map: Local matching ($f_{\rm pivot} = 0.7 \, {\rm yr}^{-1}$)

Reference model: RPL | BSM–RPL map: Local matching ($f_{\rm pivot} = 0.8 \, {\rm yr}^{-1}$)

Reference model: RPL | BSM–RPL map: Local matching ($f_{\rm pivot} = 0.9 \, {\rm yr}^{-1}$)

Reference model: **RPL** | BSM–RPL map: Local matching ($f_{pivot} = 1.0 \text{ yr}^{-1}$)

Naive refits are sensitive to choice of $f_{\rm pivot}$

Reference model: CPL | BSM-CPL map: Global matching

Reference model: **CPL** | BSM–CPL map: Local matching ($f_{pivot} = 0.1 \text{ yr}^{-1}$)

Reference model: **CPL** | BSM–CPL map: Local matching ($f_{pivot} = 0.2 \text{ yr}^{-1}$)

Reference model: **CPL** | BSM–CPL map: Local matching ($f_{pivot} = 0.3 \text{ yr}^{-1}$)

Reference model: **CPL** | BSM–CPL map: Local matching ($f_{pivot} = 0.4 \text{ yr}^{-1}$)

Reference model: **CPL** | BSM–CPL map: Local matching ($f_{\text{pivot}} = 0.5 \text{ yr}^{-1}$)

Reference model: **CPL** | BSM–CPL map: Local matching ($f_{\text{pivot}} = 0.6 \text{ yr}^{-1}$)

Reference model: **CPL** | BSM–CPL map: Local matching ($f_{\text{pivot}} = 0.7 \text{ yr}^{-1}$)

Reference model: **CPL** | BSM–CPL map: Local matching ($f_{pivot} = 0.8 \text{ yr}^{-1}$)

Reference model: **CPL** | BSM–CPL map: Local matching ($f_{\text{pivot}} = 0.9 \, \text{yr}^{-1}$)

Reference model: **CPL** | BSM–CPL map: Local matching ($f_{pivot} = 1.0 \text{ yr}^{-1}$)

[Esmyol, Iovino, KS: 2506.23574]

[ACT: 2503.14454]

PTA

- Reference models: CPL (A, γ), RPL (A, γ , β)
- Better match GW spectra globally across full frequency band, e.g., via χ^2 minimization

CMB

- Reference models: CPL (A_s, n_s), RPL (A_s, n_s, α_s)
- Match primordial power spectra locally at fixed pivot scale, e.g., $k_{\rm pivot} = 0.05 \, {\rm Mpc}^{-1}$
- OK thanks to slow-roll approximation, but dependence on Ne illustrates deviation from CPL

Best option: Fit BSM models directly to raw PTA / CMB data without CPL or RPL detour

[NANOGrav: 2408.10166]

Another common approach: Refit to free spectral model, i.e., the $h^2\Omega_{\rm GW}$ "violins"

- More information than in the CPL / RPL model, less than in the full TOA data
- But physically unrealistic; rather expect a smooth spectrum \rightarrow Compromise?

Piecewise power-law reconstruction of the GWB signal

[NANOGrav: to appear soon]

[PLANCK: 1807.06211]

Piecewise power-law reconstruction of the GWB signal

[NANOGrav: to appear soon]

[PLANCK: 1807.06211]

Bayesian model average (BMA)

- Marginalize over # of power-law segments; weight models by relative evidence
- Refit BSM models to Bayesian periodogramm ("violins") of the BMA spectrum

Take-home messages

1 Lots of exciting BSM models that can be probed at the PTA frontier

2 Parameter inference at three different levels

- Bayesian MCMC fit to the PTA timing residuals \rightarrow PTArcade
- Refit to the "violins" of the free spectral model \rightarrow ceffyl
- Refit to the posterior of the running-power-law (RPL) model \rightarrow [2408.10166, 2506.23574]
- 8 Better match BSM and RPL spectra globally ("no slow-roll approximation")
- **4** Use CMB literature as an inspiration for PTA science, and vice versa

Stay tuned!

And thanks a lot for your attention