Imperial College London

CP violation and CKM measurements at LHCb

PASCOS, Durham

Mark Smith, on behalf of the LHCb collaboration

23 July 2025

Status and plans

upgrade 2 installation

LHCb v1:

- 2010-2012 Run 1, 7/8 TeV
- 2015-2018 Run 2, 13 TeV

Status

- $3\,fb^{-1}$ at $7/8\,\mathrm{TeV}$ in Run 1
- $6 \, \text{fb}^{-1}$ at $13 \, \mathrm{TeV}$ in Run 2
 - *b*-hadron cross-section roughly doubled
- Already double data set in Run 3!
 - 11.8 fb⁻¹ in 2024 and 2025 (so far)
- Aiming for $\int {\cal L} \sim 50 \, fb^{-1}$ by end of Run 4
 - Collected entire Run 1+2 data set again in 2024

Upgrade 1

[JINST 19 (2024) P06065]

Upgrade 1

[LHCb-FIGURE-2024-030] [LHCb-FIGURE-2024-021]

Excellent performance in 2024:

- Good momentum resolution \rightarrow invariant mass resolution
- Low background rates

Clear benefit from hardware trigger removal:

- Improved HLT1 efficiency at low p_{T}
- Low $p_{\rm T}$ objects can be retained in more complex HLT2 selections

First Run 3 analysis

Measurement of charm meson production asymmetries:

- Double-differential in $\eta p_{\mathrm{T}}(D)$
- For D^0 , D^+ , and D_s^+
- Using a mix of 2022 and 2023 data
 - First measurement at $\sqrt{s} = 13.6 \, {\rm TeV}$
 - Without UT, 2023 with VELO retracted
 - Small samples: $15 \text{ pb}^{-1} (D^+)$, $41 \text{ pb}^{-1} (D_s^+)$, $177 \text{ pb}^{-1} (D^0)$
- Nuisance asymmetries determined with data control modes \rightarrow no simulation

[See Francesco's presentation for details]

Comparatively precise results, even with a small sample - Gain in selection efficiency!

$$egin{aligned} &A_{
m prod}(D^0) = (0.07 \pm 0.26({
m stat}) \pm 0.10({
m syst}))\%, \ &A_{
m prod}(D^+) = (-0.33 \pm 0.29({
m stat}) \pm 0.14({
m syst}))\%, \ &A_{
m prod}(D_s^+) = (0.18 \pm 0.26({
m stat}) \pm 0.08({
m syst}))\% \end{aligned}$$

compared to $1 \text{ fb}^{-1} 7 \text{ TeV}$ (2011) results:

$$egin{aligned} &\mathcal{A}_{
m prod}(D^+) = (-0.96 \pm 0.26 ({
m stat}) \pm 0.18 ({
m syst}))\%, \ &\mathcal{A}_{
m prod}(D^+_s) = (-0.33 \pm 0.22 ({
m stat}) \pm 0.10 ({
m syst}))\% \end{aligned}$$

Cabibbo - Kobayashi - Maskawa matrix

Governs quark flavour changing interactions. It is a 3×3 matrix - 3 real parameters, 1 phase.

$$\begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} = \begin{pmatrix} 1 - \lambda^2/2 & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \lambda^2/2 & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix}$$

If we impose unitarity, $V^{\dagger}V = I$

$$\sum_{k}V_{ik}^{*}V_{jk}=0$$

For *CP* violation only consider three triangles with complex parts in (V_{td}, V_{ub}) :

$$V_{ud}V_{us}^* + V_{cd}V_{cs}^* + V_{td}V_{ts}^* = \mathcal{O}(\lambda) + \mathcal{O}(\lambda) + \mathcal{O}(\lambda^5)\eta = 0$$

$$V_{us}V_{ub}^* + V_{cs}V_{cb}^* + V_{ts}V_{tb}^* = \mathcal{O}(\lambda^4)\eta + \mathcal{O}(\lambda^2) + \mathcal{O}(\lambda^2) = 0$$

$$V_{ud}V_{ub}^* + V_{cd}V_{cb}^* + V_{td}V_{tb}^* = \mathcal{O}(\lambda^3)\eta + \mathcal{O}(\lambda^3) + \mathcal{O}(\lambda^3)\eta = 0$$

Unitarity triangle

$$\sin 2\alpha = \Im \left(\frac{V_{tb}^* V_{td} V_{ud}^* V_{ub}}{V_{tb} V_{td}^* V_{ud} V_{ub}} \right)$$
$$\sin 2\gamma = \Im \left(\frac{V_{cb}^* V_{cd} V_{ud}^* V_{ub}}{V_{cb} V_{cd}^* V_{ud} V_{ub}} \right)$$
$$\sin 2\beta = \Im \left(\frac{V_{cb}^* V_{cd} V_{td}^* V_{tb}}{V_{cb} V_{cd}^* V_{td} V_{tb}} \right)$$

- Is the triangle a triangle?
- Are different determinations consistent?

Unitarity triangle

[EPJC 41 (2005) 1]

Measure $\gamma: B^0_s \to D^{\mp}_s K^{\pm}$ [JHEP 03 (2025) 139] u, c, tb \overline{s} W^{\pm} $\overline{B}{}^{0}_{s}$ D_s^+ $V_{ub}^* \times V_{cs} \approx \lambda^3$ D_s^+ $V_{cb} \times V_{us}^* \approx \lambda^3$ K^{-}

- CP-violation in interference between mixing and decay
- Similar decay amplitudes:

$$r_{D_sK} = \frac{|A(\overline{B}^0_s \to D^+_s K^-)|}{|A(B^0_s \to D^+_s K^-)|} \approx 0.4$$

- A strong phase difference between decay amplitudes δ
- Two weak phases: γ from V_{ub}^* and β_s from B_s^0 mixing

Measure
$$\gamma: B_s^0 \to D_s^{\mp} K^{\pm}$$

where

[JHEP 03 (2025) 139]

$$\begin{split} \frac{\mathrm{d}\Gamma_{B_{s}^{0}\to f}(t)}{\mathrm{d}t} &= \frac{1}{2}|A_{f}|^{2}(1+|\lambda_{f}|^{2})e^{-\Gamma_{s}t}\left[\cosh\left(\frac{\Delta\Gamma_{s}t}{2}\right) + A_{f}^{\Delta\Gamma}\sinh\left(\frac{\Delta\Gamma_{s}t}{2}\right)\right.\\ &+ C_{f}\cos\left(\Delta m_{s}t\right) - S_{f}\sin\left(\Delta m_{s}t\right)\right],\\ \frac{\mathrm{d}\Gamma_{\bar{B}_{s}^{0}\to f}(t)}{\mathrm{d}t} &= \frac{1}{2}|A_{f}|^{2}\left|\frac{p}{q}\right|^{2}\left(1+|\lambda_{f}|^{2}\right)e^{-\Gamma_{s}t}\left[\cosh\left(\frac{\Delta\Gamma_{s}t}{2}\right) + A_{f}^{\Delta\Gamma}\sinh\left(\frac{\Delta\Gamma_{s}t}{2}\right)\right.\\ &- C_{f}\cos\left(\Delta m_{s}t\right) + S_{f}\sin\left(\Delta m_{s}t\right)\right],\\ \frac{p}{q} &= 1 \text{ (no } CPV \text{ in } B_{s}^{0} \text{ mixing}), \ |\lambda_{f}| = \left|\frac{1}{\lambda_{f}}\right| \text{ (no } CPV \text{ in this decay) and}\\ &C_{f} &= \frac{1 - r_{D_{s}K}^{2}}{1 + r_{D_{s}K}^{2}},\\ A_{f}^{\Delta\Gamma} &= \frac{-2r_{D_{s}K}\cos(\delta - (\gamma - 2\beta_{s}))}{1 + r_{D_{s}K}^{2}}, \quad S_{f} &= \frac{2r_{D_{s}K}\sin(\delta + (\gamma - 2\beta_{s}))}{1 + r_{D_{s}K}^{2}}. \end{split}$$

Measure $\gamma: B_s^0 \to D_s^{\mp} K^{\pm}$

[JHEP 03 (2025) 139]

- Full Run 2 LHCb data set: 6 fb⁻¹
 - Follows on from Run 1 analysis [JHEP 03 (2018) 059]
- Reconstruct D_s^- in 5 final states: $K^-\pi^+\pi^-$, $\pi^+\pi^-\pi^-$, $\phi\pi^-$. $K^{*0}K^-$, $K^-K^+\pi^-$
- Fit bkg subtracted decay time distributions of B_s^0 and \overline{B}_s^0 to the same final state
 - 2D fit (mD_s^-K) and $m(h^+h^-h^+)$ and calculate sWeights

Measure $\gamma: B_s^0 \to D_s^{\mp} K^{\pm}$

Fit the decay-time distribution and extract *CPV* observables

- Tag the initial B⁰_s flavour [JINST 11 (2016) 05] [JINST 10 (2015) 10] [EPJC 72 (2012) 2022]
 - Tagging power of $(6.10 \pm 0.15)\%$
- Correct for the detector and selection decay-time acceptance
 - Determined from $B_s^0 \rightarrow D_s^- \pi^+$ data and corrected to $B_s^0 \rightarrow D_s^- K^+$ with simulation
- Model decay-time resolution and bias using per-event vertex fit uncertainty
 - Calibrated with sample of $D_s^- K^+$, where both D_s^- and K^+ originate from the PV

Measure $\gamma: B_s^0 \to D_s^{\pm} K^{\pm}$

Run 2 results:

$$r_{D_sK} = 0.327^{+0.039}_{-0.037}$$

$$\delta = (346.9^{+6.8}_{-6.6})^{\circ}$$

$$\gamma = (74 \pm 12)^{\circ}$$

Combined with Run 1 analysis:

$$\begin{aligned} r_{D_s \kappa} &= 0.318^{+0.034}_{-0.033} \\ \delta &= (347.6 \pm 6.3)^{\circ} \\ \gamma &= (74^{+12}_{-11})^{\circ} \end{aligned}$$

[JHEP 03 (2025) 139]

 $\begin{array}{cccc} \text{Measure } \gamma \colon B^{-} \to DK^{*-} & \text{[JHEP 02 (2025) 113]} \\ & & & \\ & & & \\ & & & \\ B^{-} \frac{b}{\bar{u}} \underbrace{ & & \\ & & & & \\ & &$

- Weak phase of γ between the two diagrams
- Strong phase of δ between the two diagrams
- Amplitude ratio $r_{DK^*} \sim 0.13$ [PRD 91 (2015) 073007]
- Measure interference between amplitudes with common final states of the D
 - (quasi-) CP eigenstates: K^+K^- , $\pi^+\pi^-$, $\pi^+\pi^-\pi^+\pi^-$
 - Self-conjugate $K_{\rm S}K^+K^-$, $K_{\rm S}\pi^+\pi^-$
 - Non self-conjugate decays:
 - OS kaon wrt B^- : K^+ π^- , K^+ $\pi^ \pi^+\pi^-$. Cabibbo suppressed
 - SS kaon wrt B^- : $K^ \pi^+$, $K^ \pi^+$ $\pi^+\pi^-$. Cabibbo favoured

Full LHCb Run 1 + Run 2 data set: $9 \, \text{fb}^{-1}$

- Extract yields from invariant mass fits
 - Separate for B^+ and B^-
- Correct asymmetries for known production ([JHEP 04 (2021) 081]) and detection asymmetries ([PRD 95 (2017) 052005])
- Extract γ from asymmetries

D decay mode	B^-	B^+	
$K\pi$	2656 ± 55	2844 ± 57	
KK	366 ± 20	274 ± 18	
$\pi\pi$	121 ± 13	63 ± 10	
πK	5 ± 4	35 ± 7	
$K\pi\pi\pi$	1665 ± 44	1783 ± 45	
$\pi\pi\pi\pi$	160 ± 14	149 ± 14	
$\pi K \pi \pi$	13 ± 5	18 ± 5	
$K^0_{ m s}\pi\pi$	279 ± 18	268 ± 18	
$K^0_{ m s}KK$	29 ± 6	40 ± 7	

Measure $\gamma: B^- \rightarrow DK^{*-}$

[JHEP 02 (2025) 113]

Measure $\gamma: B^- \rightarrow DK^{*-}$

[JHEP 02 (2025) 113]

Combine *CP* asymmetries with external inputs:

- *D* decay parameters [LHCb-CONF-2022-003], [JHEP 05 (2021) 164]
- CP even fraction of $D \rightarrow \pi^+\pi^-\pi^+\pi^-$ [PRD 106 (2022) 092004]

 $\gamma = (63 \pm 13)^{\circ}$ $r_{DK^*} = 0.103 \pm 0.010$ $\delta_{DK^*} = (47^{+14}_{-12})^{\circ}$

LHCb γ combination

[LHCb-CONF-2024-004]

 $\gamma_{\rm LHCb} = (64.6 \pm 2.8)^{\circ}$ $\gamma_{\rm UTfit} = (64.9 \pm 1.4)^{\circ} [\mathsf{JHEP} \ 10 \ (2006) \ 081]$ $\gamma_{\rm CKMfitter} = (66.0^{+0.7}_{-1.9})^{\circ} [\mathsf{Eur. Phys. J. C41, 1-131} \ (2005)]$

First observation of CPV in baryons

- CP violation is well established in meson decays
 - Sizeable asymmetries observed in B
 ightarrow hh' or multibody B decays
 - Changing strong phases around resonances enhances observable *CP* violation in particular phase-space regions
- CP violation in baryons only observed recently; $\Lambda_b o p K^- \pi^+ \pi^-$

[Nature (2025)]

First observation of CPV in baryons

[Nature (2025)]

• Split final state into resonance regions

$A_{CP} = (2.45 \pm 0.46 \pm 0.10)\%$		6 for CPV	for CPV enhancement			
		• N*+	$ ightarrow p\pi^+\pi^-$, $N^{*0} ightarrow p\pi^-$			
		• $\Lambda \rightarrow$	pK ⁻			
• 5.2 a	significance - First observa	ation! • K^{*-}	$ ightarrow K^-\pi^+\pi^-$, $K^{*0} ightarrow K^-\pi^+\pi^-$	$^{-}\pi^{+}$,		
	Decay topology	Mass region (GeV/c^2)	A _{CP}			
	$\Lambda_b o R(pK^-)R(\pi^+\pi^-)$	$m_{pK^-} < 2.2 \ m_{\pi^+\pi^-} < 1.1$	$(5.3 \pm 1.3 \pm 0.2)\%$			
	$\Lambda_b \to R(p\pi^-)R(K^-\pi^+)$	$m_{p\pi^-} < 1.7 \ 0.8 < m_{\pi^+ K^-} < 1.0$	$(2.7\pm0.8\pm0.1)\%$			
		or $1.1 < m_{\pi^+ K^-} < 1.6$	х, , , , , , , , , , , , , , , , , , ,			
	$\Lambda_b ightarrow R(ho\pi^+\pi^-)K^-$	$m_{p\pi^+\pi^-} < 2.7$	$(5.4\pm0.9\pm0.1)\%$			
	$\Lambda_b ightarrow R(K^-\pi^+\pi^-)p$	$m_{K^-\pi^+\pi^-} < 2.0$	$(2.0 \pm 1.2 \pm 0.3)\%$			

CPV in charm

- Direct *CP* violation in charm well established
 - ΔA_{CP} non-zero with > 5 σ [PRL 122 (2019) 211803]
 - 3.8σ evidence in a single channel $(D^0 \rightarrow \pi^+\pi^-)$ [PRL 131 (2023) 091802] [LHCb-CONF-2024-004]
- Search for *CP*-violation in mixing with "double-tagged" wrong-sign decays
 - $B \rightarrow D^{*+} \mu^- \overline{\nu}_{\mu} X$, $D^{*+} \rightarrow D^0 \pi^+$, $D^0 \rightarrow K \pi$
 - Measure time-dependent ratio of $D^0 \to K^+\pi^- \ / \ D^0 \to K^-\pi^+$

No evidence for CP-violation in mixing or $D \to K \pi \mbox{ decay}$

CPV in charm: $D^0 \rightarrow K^0_s K^0_s$

- Branching fraction is small: $(1.41 \pm 0.05) \times 10^{-4}$ [PDG]
- SM CP violation A_{CP} <~ 1% [PRD 92 (2015) 054036][PRD 111 (2025) 035023]

LHCB-PAPER-2025-036

(in preparation)

Previous LHCb effort with Run 2 data (6 fb⁻¹): [PRD 104 (2021) L031102]

$${\cal A}_{CP}(D^0 o {\cal K}^0_{
m S} {\cal K}^0_{
m S}) = (-3.1 \pm 1.2 \pm 0.4 \pm 0.2)\%$$

New update with 2024 data set: $6.2 \, \text{fb}^{-1}$

- Analyse "easiest" $K^0_{\rm s}$ candidates decaying in VELO
 - Best mass resolution
 - $K^0_{\rm s}$ decaying downstream will be included in follow up analysis
- Improved online selection:
 - Previously required energy in CALO and some basic track features
 - Now we reconstruct the event online \rightarrow select ${\cal K}^0_{\rm s}$ candidates in the initial selection stage!

CPV in charm

Method:

- Tag D^0 flavour with $D^{*+}
 ightarrow D^0 \pi^+$
- Multivariate analysis for bkg suppression → split data into two purity bins
- 3D fit of $\Delta m =$ $m(K_{\rm S}^0 K_{\rm S}^0 \pi^+) - m(K_{\rm S}^0 K_{\rm S}^0)$; $m(\pi^+\pi^-)_1$; $m(\pi^+\pi^-)_2$ to extract signal yields
- Use similar $D^0 \rightarrow K^0_{\rm S} \pi^+ \pi^$ control mode to correct production and detection asymmetries

LHCB-PAPER-2025-036

CPV in charm

(in preparation)

Data block	Yield	\mathcal{A}^{CP} $[\%]$
1	2915 ± 85	0.3 ± 2.4
2	1385 ± 55	-0.3 ± 3.4
3	1639 ± 56	0.8 ± 3.2
4	1534 ± 75	5.5 ± 3.4
5	3149 ± 94	0.0 ± 2.4
6	2544 ± 77	4.6 ± 2.6
7	1599 ± 67	1.7 ± 3.3
8	911 ± 54	5.6 ± 4.3

- Total signal yield: $15,676 \pm 229$
- Compare to 8,102 from full Run 2 data
 - Of which 5,444 match the requirements of this analysis (decay in VELO, originate in PV)
- Record luminosity quicker in Run 3
- Record more signal per fb⁻¹

$$A_{CP}(D^0 o K^0_{
m s} K^0_{
m s})_{
m LHCb\,2025} = (1.86 \pm 1.04 \pm 0.38)\%$$

Upgrade II

 $\overline{\mathcal{L}^{\rm U1} \sim 2 \times 10^{33} \, {\rm cm}^{-2} \, {\rm s}^{-1}} \rightarrow \mathcal{L}^{\rm U2} \sim 1.5 \times 10^{34} \, {\rm cm}^{-2} \, {\rm s}^{-1}}$

- For installation in LS4 (2034-2035)
 - Take advantage of HL-LHC
- Aiming for $\int {\cal L} \sim 300 \, \text{fb}^{-1}$
 - Reminder from Upgrade 1: $\int {\cal L} \sim 50 \, \text{fb}^{-1}$
- New detector technologies required
 - High granularity, radiation hard
 - Timing
 - TDRs due in 2026

[LHCb-PUB-2018-027]

[LHCb-TDR-026]

Events to expect

From [RevModPhys 94 (2022) 015003](based on [PTEP 12 (2019) 123C01], [EPJC 74 (2014) 3026], [LHCb-PUB-2019-001])

Experiment	BABAR	Belle	Belle II	LHCb			
				Run 1	$\operatorname{Run} 2$	Runs $3-4$	Runs 5–6
Completion date	2008	2010	2031	2012	2018	2031	2041
Center-of-mass energy	$10.58~{\rm GeV}$	$10.58/10.87~{ m GeV}$	$10.58/10.87~{ m GeV}$	$7/8~{ m TeV}$	$13 { m TeV}$	$14 { m TeV}$	$14 { m ~TeV}$
$b\overline{b}$ cross section [nb]	1.05	1.05/0.34	1.05/0.34	$(3.0/3.4) \times 10^5$	5.6×10^5	6.0×10^5	$6.0 imes 10^5$
Integrated luminosity $[fb^{-1}]$	424	711/121	$(40/4) \times 10^{3}$	3	6	40	300
B^0 mesons $[10^9]$	0.47	0.77	40	100	350	2,500	19,000
B^+ mesons $[10^9]$	0.47	0.77	40	100	350	2,500	19,000
B_s mesons $[10^9]$	-	0.01	0.5	24	84	610	$4,\!600$
Λ_b baryons $[10^9]$	-	-	-	51	180	1,300	9,800
B_c mesons $[10^9]$	-	-	-	0.8	4.4	19	150

Large samples of all hadron species

What it means - unitarity triangle

[EPJC 41 (2005) 1] [LHCb-PUB-2018-027]

Charm physics

[LHCb-PUB-2018-027]

Enormous $D^{*+} \rightarrow D^0 \pi^+$ tagged charm yields. i.e for time-dependent *CP*-violation A_{Γ} :

Table 6.4: Extrapolated signal yields, and statistical precision on indirect CP violation from A_{Γ} .

Sample (\mathcal{L})	Tag	Yield K^+K^-	$\sigma(A_{\Gamma})$	Yield $\pi^+\pi^-$	$\sigma(A_{\Gamma})$
Run 1–2 (9 fb ⁻¹)	Prompt	60M	0.013%	18M	0.024%
Run 1–3 (23 fb ⁻¹)	Prompt	310M	0.0056%	92M	0.0104~%
Run 1–4 (50 fb ⁻¹)	Prompt	793M	0.0035%	236M	0.0065~%
Run 1–5 (300 fb ⁻¹)	\mathbf{Prompt}	5.3G	0.0014%	1.6G	0.0025~%

$\mathcal{O}(10^{-5})$ precision, testing the SM

Conclusion

- LHCb is in the midst of Run 3 data taking
 - The detector and data acquisition is in excellent shape, with an abundant harvest
 - The first physics analyses of Run 3 are appearing
- Run 1+2 analyses are being finalised
 - Some high profile results still expected
- The second upgrade is already being planned
 - Significant technical challenges design choices being made
 - Expect that systematics will continue to be controlled
 - Fully exploit the statistical power of HL-LHC for flavour

The End