Sequestered Conformal Anomaly Mediation (SCAM)

LR w/ Michael (Mick) Nee

Introduction

- Supersymmetry somewhat out of fashion
- Not found at LHC
- Been well studied

But

- Essential to string theory
- Likely essential to stable vacua
- Relevant to some axion models
- Tool to study strongly interacting theories

Intro Continued

- Supersymmetry breaking even less fashionable
- Messy and unsatisfying
- Need both to break susy and to communicate it
 Often flavor a probem when susy broken
- But essential and interesting questions remain
- How to stabilize moduli
 - Moduli a feature of superymmetric theories
- How isolated can SUSY breaking be
 - Can superpartners be protected from supersymmetry-breaking

Anomaly-Mediation

- Anomaly mediation seemed to address latter
- Idea is that gravity mediates supersymmetry breaking universally
 - Always suppressed by gravity scale
 - In extra-dimensional context usually suppressed by volume
- Conformal compensator otoh couples to any violation of 4d scale invariance, no matter where in space
- So if conformal compensator has an F term, susy breaking loop-level masses for all
- Seems NOT suppressed by size of extra dimension
- More universal

Anomaly Mediation

Superpotenttial Kahler potential but for sequestering f more natural

Conformal compensator Introduces spurious scale symmetry Plays important role

$$\frac{\mathcal{L}}{\sqrt{-g}} = \int d^4\theta \, |\mathbf{C}|^2 f\left(Q_i^{\dagger}, e^{-V}Q_i\right) + \left[\int d^2\theta \, \left(\mathbf{C}^3 W(Q_i) + \tau(Q_i) \mathcal{W}_{\alpha} \mathcal{W}^{\alpha}\right) + h.c.\right], \qquad (2.1)$$

where W is the superpontial and f is related to the Kähler potential K by

$$f = -3M_P^2 e^{-K/3}.$$
 (2.2)

The conformal compensator, \mathbf{C} , is a spurion superfield which is introduced to formally restore the scale invariance of the theory. Scale invariance is then explicitly broken by the gauge-fixing

$$\mathbf{C} = 1 + \theta^2 F_C \,. \tag{2.3}$$

A non-zero F_C does not break supersymmetry by itself, in contrast to the *F*-components of physical chiral multiplets. One way this can be seen as it is responsible for generating the SUSY-preserving mass splittings in AdS space [28, 29, 31]. As we will show below, it is the only source of negative energy density in the potential, so must be of the same order as the SUSY-breaking *F*-terms if we are to end with a theory in Minkowski space after SUSY-breaking.

For now we focus on deriving the effective potential for the scalar components of the Q_i , neglecting the fermions and gauge fields. Solving for the F-terms gives

$$F_i^{\dagger} = (K^{-1})^{ij} \left(\frac{\partial W}{\partial q_j} + \frac{W}{M_P^2} \frac{\partial K}{\partial q_j} \right) , \qquad (2.4)$$

$$F_C^{\dagger} = \frac{\partial K}{\partial q_j} \frac{F_j^{\dagger}}{3M_p^2} + e^{K/3} \frac{W}{M_P^2}, \qquad (2.5)$$

where K_{ij} is the Kähler metric

Potential has kinetic term Contributions from superpotential, gauge interactions

$$K_{ij} = \frac{\partial^2 K}{\partial q_i^{\dagger} \partial q_j} \,. \tag{2.6}$$

Plugging this into (2.1) and performing a Weyl rescaling to go the Eistein frame gives the following Lagrangian:

$$\frac{\mathcal{L}}{\sqrt{-g}} = K_{ij}(\partial q_i^{\dagger})(\partial q_j) - V_F(q_i^{\dagger}, q_i) - V_D(q_i^{\dagger}, q_i), \qquad (2.7)$$

SUSY Potential and AM

where V_F is the potential from the *F*-terms and V_D the *D*-term potential coming from the couplings to gauge fields. These are given by

$$\begin{split} V_{D}(q_{i}^{\dagger},q_{i}) &= \frac{1}{2} \sum_{a} D_{a}^{2} = \sum_{a} \frac{g_{a}^{2}}{2} \left(\frac{\partial K}{\partial q_{i}} t^{a} q_{i} \right)^{2}, \\ V_{F}(q_{i}^{\dagger},q_{i}) &= e^{K} K^{ij} F_{i}^{\dagger} F_{j} - 3M_{P}^{2} e^{K/3} |F_{C}|^{2}, \\ &= e^{K} \left[(K^{-1})^{ij} \left(\frac{\partial W^{\dagger}}{\partial q_{i}^{\dagger}} + \frac{W^{\dagger}}{M_{P}^{2}} \frac{\partial K}{\partial q_{i}^{\dagger}} \right) \left(\frac{\partial W}{\partial q_{j}} + \frac{W}{M_{P}^{2}} \frac{\partial K}{\partial q_{j}} \right) - 3 \frac{|W|^{2}}{M_{P}^{2}} \right], \end{split}$$

$$(2.8)$$

where the sum over a in the first line is over the different gauge groups. Here we see that V_D is strictly positive and the only negative contribution to V_F comes from F_C . Tuning the cosmological constant to zero after SUSY breaking relates F_C to the SUSY-breaking energy density, regardless if it comes from F- or D-term breaking. This means that at the minimum

$$M_P^2 |F_C|^2 = \frac{e^{2K/3}}{3} K^{ij} F_i^{\dagger} F_j + \frac{e^{-K/3}}{6} \sum_a D_a^2.$$
(2.9)

While F_C is not responsible for breaking supersymmetry itself, it must be nonzero in any realistic model of SUSY breaking.

Compensator F term

- So we see that in the presence of a nonzero superpotential, the F_c term turns on
 - Value determined to cancel supersymmetry breaking energy to get flat space.

- Notice that F_c really has nothing to do with susy breaking. It's value is determined by susy breaking but its source is whatever generates negative energy through F_c.
- This leads to predictive susy breaking masses.

Take gaugino mass as an example

Important point is that masses through scale dependence Virtually guaranteed in a physical field theory

$$\tau = \frac{1}{g_0^2} + 2b \log\left(\frac{\mu}{\Lambda_{\rm uv} \mathbf{C}}\right) \,, \tag{2.10}$$

where Λ_{uv} is the UV cutoff and b is the 1-loop coefficient in the β -function for g:

$$\beta(g) = \frac{dg}{d\log(\mu)} = -bg^3.$$
(2.11)

Substituting equation (2.10) back into (2.1) we find that there is now a mass term for the gauginos which goes like

$$V_{\lambda,\,\mathrm{mass}} = -\frac{\beta(g)}{2a} F_C \lambda \lambda \,. \tag{2.12}$$

Mass proportional to beta function Proportional to $\rm F_{\rm C}$

AM Most Interesting When Sequestering

- AM suppressed by gravity, loops
- If other sources of communication of SUSY breaking those likely dominate
 - AM might however be dominant source of gaugino mass in theories without singlets Randall, Sundrum/ Giudice Luty, Murayama, Rattazzi
- But unlikely to be dominant source of scalar mass in general
 - Expect direct interactions in Kahler potential
- Exception is sequestering; no direct interactions Randall, Sundrum
- Would be fine-tuned unless motivated by an extra dimension
- So we study anomaly mediation in a five-dimensional setup

Sequestering and an Extra Dimension

Without sequestering

$$\Delta \mathcal{L} \sim \int d^4 \theta \, \frac{1}{M_P^2} |X|^2 |Q|^2 \,, \tag{2.14}$$

this will lead to scalar masses of order

$$\Delta m_q^2 \sim \frac{|F_X|^2}{M_P^2},$$
 (2.15)

which is generically larger than the anomaly mediated contribution which is suppressed by additional powers of $\beta(g)$. Anomaly mediation is typically only the dominant contribution to SUSY breaking when the Kähler potential and superpotential have a sequestered form

$$f = f_{\rm vis} + f_{\rm hid} , \qquad \qquad W = W_{\rm vis} + W_{\rm hid} , \qquad (2.16)$$

If this structure, direct interaction forbidden Motivation for this structure is locality Most natural with extra dimensions and branes Need to communicate susy breaking through an extra dimension

Raises Several Puzzles

 When you have nontrivial geometry, why doesn't communication from 5d F- term depend on position (that is wavefunction)?

4d result seems robust

- Physicists have assumed negative energy generated by superpotentials
 - on branes!
 - Seems natural; sequester susy breaking and sequester superpotential
- But: if you "generate" negative energy on one brane, why isn't susy breaking spectrum sensitive to location
- Also we know 4d cc same on every slice if warped; how does theory account for this?

More Puzzles

- As we will see you naturally have no-scale N=2 in bulk. Equation of motion for modulus sets F_c to zero!
- Has been argued this implies F_c term depends on stabilization mechanism for the extra dimension
 - By this logic, can't just ask about F_c; need to know what stabilizing field is doing too
- Also 5d with branes is a singular space
 Do delta functions affect the answer?
- Final question is why has no one actually worked it out fully in 5d, given these uncertainties !!

Toy Models

- The answer to last question is probably that it's messy
 - And didn't seem necessary
 - 4d Theories seemed to suffice
- We will see this is not the case
- To illustrate, I'll present two toy models
 - Model I: Problem from No-Scale
 - Model II: Problem from singular space

Toy Model I: Problem from No-Scale

- No-scale structure physically motivated
- Lowest component of Sigma is the radion
- $\Sigma \equiv \varphi_{\Sigma} \theta \chi_{\Sigma} \theta^2 F_{\Sigma}$
- M_p² =M³ r
- So expect f scales like Sigma
- Recall f=e^{-K/3}

$$K = -3 \log V_{\Sigma} = -3 \log (\Sigma + \Sigma^{\dagger} - \partial_y V)$$

Toy Model I: Compensator F term Vanishes!

ound the negrangian according one shoot to

$$\frac{\mathcal{L}_{\text{toy model}}}{\sqrt{-g}} = \int dy \left\{ -\int d^4\theta \, \left(\Sigma + \Sigma^\dagger\right) |\mathbf{C}|^{4/3} - \int d^2\theta \, \mathbf{C}^2 \left[W_{\text{bulk}} + \delta(y) W_0 + \delta(y - \pi) W_\pi \right] \right\} \,, \quad (2.17)$$

where $y \in [0, \pi]$ is the 5'th co-ordinate. C is the conformal compensator, and we note that the powers of C are different to those of equation (2.1) because the compensator has weight 3/2 in 5 dimensions. While there is no explicit kinetic term for the radion above, one is generated after going to the Einstein frame in 4d (see e.g. [37]).

The equation of motion for F_{Σ} is:

$$\frac{1}{\sqrt{-g}} \frac{\delta \mathcal{L}_{\text{toy model}}}{\delta F_{\Sigma}} = -CF_C^{\dagger} = 0, \qquad (2.18)$$

and as the potential is proportional to F_C it vanishes identically. This result is due to the 'no-scale' form of the Kähler potential [84, 85]

Toy Model II: Potentially Dangerous Singularities

• Break No-Scale; eg at loop level

$$\frac{1}{\sqrt{-g}}\Delta\mathcal{L}_{\text{toy model}} = -\beta \int dy \int d^4\theta \ (\Sigma + \Sigma^{\dagger})^{-2} |\mathbf{C}|^{4/3}$$

 $F_C^{\dagger} = \frac{\beta C^{5/3}}{(M_5 r)^4} \left(W_{\text{bulk}} + \delta(y) W_0 + \delta(y - \pi) W_{\pi} \right) \,, \qquad F_{\Sigma}^{\dagger} = -3C^{2/3} \left(W_{\text{bulk}} + \delta(y) W_0 + \delta(y - \pi) W_{\pi} \right) \,.$

Proportional to β as you would expect

•Potential no longer vanishes

•However, it is badly singular

$$\frac{\mathcal{L}_{\text{singular}}}{\sqrt{-g}} = \frac{2\beta \, C^{8/3}}{(M_5 r)^4} \left(|W_0 \delta(y)|^2 + |W_\pi \delta(y - \pi)|^2 \right)$$

How to Handle Singular Terms?

- 1. Standard approach is to use eft at level of *superpotential*
 - Integrate over y; seems fine
 - However, standard eft applies at level of potential
 - There is no justification for this procedure (it's wrong)
- 2. Alternatively add counterterm
 - But delta squared counterterm leads to higher order in delta
 - Nonrenormalizable theory with arbitrary counterterms
- 3. Our approach; as with nonsusy theories solve for zero modes first
 - Apply same approach to auxiliary fields
 - Solve for bulk fields and integrate them ouut
 - But solve for auxiliary fields too
 - Derive *potential* of low-energy theory
 - What we would do in non-SUSY theories

Why Nontrivial

- Fields sourcing with delta function conventional
 - Fields are dynamical, delta function source and solve equation of motion for bulk field
- Auxiliary fields different
 - Nondynamical
 - Delta function in F term remains
 - At end all squares of such terms have to cancel
 - Usually in each F term individually
 - Which means sourcing bulk fields to cancel delta functions
- We will however see that it is possible for delta squared to cancel in potential
- When loop corrections break no-scale form, requires stabilizing bulk fields that adjust

Heads up on bottom line: Implication

- Boundary superpotentials generate zero or positive energy contributions
 - Not negative energy as expected from superpotential
 - So not responsible for 4d anomaly mediation!
 - But can generate susy breaking, "5d anomaly mediation"
- 4d Anomaly Mediation derives from bulk superpotential

However

- Can get brane anomaly-mediation in 5d
 - Suppressed by breaking of no-scale structure
- Such terms have to be added explicitly as susybreaking terms in low-energy theory
- Note that compensator roles for anomalymediation and generating negative energy can decouple in 5d theory
- When this happens won't be captured in 4d EFT

- We now see how this works
 - Also see how brane superpotentials sometimes act as sources (even if nominally field-independent!
- See what is needed for negative energy
- Key will be breaking no-scale structure in bulk and bulk superpotential

Note difference to what is generally assumed

First: Add Source Terms to Stabilize Generalizes Goldberger-Wise to SUSY

$$C_{4} = C_{+}^{2/3},$$

$$W|_{y=0} = -\frac{4J_{0}\Phi_{+}}{C_{+}},$$

$$W|_{y=\pi} = \frac{4J_{\pi}\Phi_{+}}{C_{+}},$$

$$\mathcal{L}_{bdy} = 4e^{3\sigma} \left[-\delta(y) \int d^{2}\theta C_{+}J_{0}\Phi_{+} + \delta(y-\pi) \int d^{2}\theta C_{+}J_{\pi}\Phi_{+} + h.c.\right],$$

$$= 4e^{3\sigma} \left[-\delta(y) \left(CJ_{0}F_{\Phi_{+}} + F_{C_{+}}J_{0}\varphi_{+}\right) + \delta(y-\pi) \left(CJ_{\pi}F_{\Phi_{+}} + F_{C_{+}}J_{\pi}\varphi_{+}\right) + h.c.\right]$$

Find Background Solution

$$F_{\Phi_{\pm}}^{\dagger} = -\frac{e^{\sigma}}{r} \left(\partial_{y} + \frac{3\dot{\sigma}}{2} - g_{h}M_{5}r \right) \varphi_{-} + \frac{e^{\sigma}M_{5}^{3/2}}{r} \left[\delta(y)J_{0} - \delta(y-\pi)J_{\pi} \right] + \mathcal{O}\left(\frac{|\varphi_{\pm}|^{3}}{M_{5}^{3}}\right)$$

terms in the *F*-term equation of motion for φ_- . To see this, we can write the odd field $\varphi_ \varphi_- = \Theta(y)\overline{\varphi}_-$, where $\overline{\varphi}_-$ is even. *y* derivatives acting on φ_- then give δ -function terms:

$$\partial_y \varphi_- = 2 [\delta(y) - \delta(y - \pi)] \overline{\varphi}_- + \Theta(y) \partial_y \overline{\varphi}_-.$$
 (

$$\overline{\varphi}_{-}(0) \simeq \frac{M_5^{3/2} J_0}{2}, \qquad \qquad \overline{\varphi}_{-}(\pi) \simeq \frac{M_5^{3/2} J_{\pi}}{2}.$$

Requiring that $F_{\Phi_{+}}^{\dagger} = 0$ with the above boundary conditions then leads to the solution

$$\overline{\varphi}_{-}(y) = \frac{M_5^{3/2} J_0}{2} \exp\left(-\frac{3\sigma(y)}{2} + r M_5 g_h y\right),$$

the boundary condition on the IR brane is satisfied only if

$$J_0 \exp\left(-\frac{3\sigma(\pi)}{2} + rM_5 g_h \pi\right) = J_\pi \,.$$

SUSY GW

• Found a 5d supersymmetric solution for particular value of r

$$r = \frac{1}{(g_c + g_h)M_5\pi} \log\left(\frac{J_\pi}{J_0}\right)$$

- If additional perturbations—energy for example—one has a nonsusy solution
- •Then see full solution to second order eq (as with nonsusy)
- Necessary to satisfy both boundary conditions
- •Supersymmetric if relation above satisfied and model has no additional terms

•Can also see in 4d: 4d EFT is mimimized for susy value of r

$$V_{\text{eff}} = \frac{2M_5^4(g_c - 3g_h) \left| J_{\pi} - J_0 e^{\pi M_5 r(g_c + g_h)} \right|^2}{3 \left(e^{\frac{8}{3}\pi g_c M_5 r} - e^{2\pi M_5 r(g_c + g_h)} \right)}$$

Now Add Boundary Superpotentials

$$\mathcal{L}_{bdy} = 4e^{3\sigma} \left[\delta(y) \int d^2\theta \left(C_+^2 W_0 + C_+ J_0 \Phi_+ \right) - \delta(y - \pi) \int d^2\theta \left(C_+^2 W_\pi + C_+ J_\pi \Phi_+ \right) + h.c. \right] \\ = 4e^{3\sigma} \left[\delta(y) \left(C J_0 F_{\Phi_+} + F_{C_+} (J_0 \varphi_+ + 2CW_0) \right) + h.c. \right] \\ - \delta(y - \pi) \left(C J_\pi F_{\Phi_+} + F_{C_+} (J_\pi \varphi_+ + 2CW_\pi) \right) + h.c. \right].$$
(4)

- Nonzero radion auxiliary
 - This leads to Scherk-Schwartz supersymmetry breaking
 - Pomarol, Marti
 - $F_{\Sigma} \sim W$, $F_{C} \sim 0$
- No-scale still preserved so energy vanishes
- Since we are interested in anomaly mediation
- Need to break no-scale
 - Here we do it with a loop correction term

$$\mathcal{L}_{\mathrm{D}} = -3e^{2\sigma} \int d^{4}\theta \ \left(-\frac{8\beta}{9} \mathcal{V}_{\Sigma}^{-2} + \mathcal{V}_{\Sigma} \right) \left[\Sigma_{a}^{\dagger} \left(e^{-2g_{a}\sigma_{9}V} \right)_{b}^{a} \Sigma^{b} - \Phi_{a}^{\dagger} \left(e^{-2g_{h}\sigma_{9}V} \right)_{b}^{a} \Phi^{b} \right]^{2/3}$$

- Issue here is δ squared terms
- Because of form of no-scale potential $(F_c^+F_c^-F_{\Sigma}^+hc)$
- F_{Σ} can turn on when $F_{C}=0$ (when F's $\delta(r)$
- Now with β term $F_{\Sigma}^{+}F_{\Sigma}$
- So F_{Σ} induces δ squared; need to eliminate
- We need hypermultiplet fields to turn on or adjust
- Find both compensator and radion have nonzero vevs
- But still zero energy at minimum!

Solve in presence of perturbation

$$\begin{split} V|_{\text{singular}} &= \frac{8}{M_5^4 r^5} \bigg\{ [\delta(y)]^2 \left((M_5 r)^4 \left| J_0 M_5^{3/2} + W_0 \varphi_+^{\dagger} - \overline{\varphi}_- \right|^2 + \beta \left(\frac{1}{9} |J_0 M_5^{3/2} - \overline{\varphi}_-|^2 - 2|W_0|^2 \right) \right) \right. \end{split}$$
(5.
$$+ \left[\delta(y - \pi) \right]^2 \left((M_5 r)^3 \left| J_\pi M_5^{3/2} + W_\pi \varphi_+^{\dagger} - \overline{\varphi}_- \right|^2 + \beta \left(\frac{1}{9} |J_\pi M_5^{3/2} - \overline{\varphi}_-|^2 - 2|W_\pi|^2 \right) \right) \right.$$
(5.)

where we have kept terms up to quadratic in combinations of the W's, J's and φ_{\pm} 's. We have a used $\varphi_{-} = \Theta(y)\overline{\varphi}_{-}$, as discussed in section 5.1. Setting $V|_{\text{singular}} = 0$ does not have a unique solution but the one which minimizes the potential turns out to be for $\varphi_{+} = 0$ and

$$\overline{\varphi}_{-}(0) = M_5^{3/2} \left(J_0 + \frac{\sqrt{2\beta} W_0}{(M_5 r)^2} \right) , \qquad \overline{\varphi}_{-}(\pi) = M_5^{3/2} \left(J_\pi + \frac{\sqrt{2\beta} W_\pi}{(M_5 r)^2} \right) . \tag{5.}$$

As promised, there is a nonzero F-term for both the radion and compensator,

$$F_{C_{+}}^{\dagger}|_{bdy} = -\frac{18\beta e^{\sigma}}{M_{5}^{3/2}r^{4}} \left(\delta(y)W_{0} + \delta(y-\pi)W_{\pi}\right),$$
 (5.

$$F_{\Sigma}^{\dagger}|_{bdy} = -2e^{\sigma}M_5 \left(\delta(y)W_0 + \delta(y - \pi)W_{\pi}\right) + O(\beta),$$
 (5.

which will lead to Scherk-Schwarz SUSY-breaking [74]. This agrees with the results of ref.'s [67, 70, which also found that constant boundary supernotantials lead to a populate radius E term, but dis

Effective Potential

$$V_{\text{eff}} = (4+2\epsilon)kM_5^3\rho^{(4+2\epsilon)} \left| J_0 + \frac{\sqrt{2\beta}W_0}{(M_5r)^2} - \left(J_\pi + \frac{\sqrt{2\beta}W_\pi}{(M_5r)^2} \right)\rho^{-\epsilon} \right|^2 + \mathcal{O}\left(\rho^8, \beta^2\rho^4\right) \,. \tag{5.31}$$

We can also write it in a supersymmetric way, following the approach of section 5.2.1, which leads to the effective superpotential

$$W_{\rm eff}(\rho) = \sqrt{6(2+\epsilon)} \left(\frac{k}{M_5}\right)^{3/2} \left(\frac{\left(J_0 + \frac{\sqrt{2\beta}W_0}{(M_5r)^2}\right)\rho^{3+\epsilon}}{3+\epsilon} - \frac{\left(J_\pi + \frac{\sqrt{2\beta}W_\pi}{(M_5r)^2}\right)\rho^3}{3}\right).$$
(5.32)

Note interesting phenomenon characteristic of Scherk Schwartz We broke supersymmetry but can still find zero energy minimum This is true even though we broke no-scale with beta! Means more work if we want to get negative energy minimum (to cancel positive susy breaking energy) Also note boundary superpotential acting as a correction to source term

Even Cooler

- We will show how to get what we want (negative energy) shortly
- But for now note the interesting phenomenon:
 Sourced a field with a constant superpotential
- Let's turn off J's and see if we can just source with superpotential alone (even though superficially field-independent!)
- Answer is yes and yields a supersymmetric stabilization

Superpotential as Source

- Set Js to zero for now
- Potential (without breaking no-scale)

$$V|_{\text{sing.}} = \frac{16}{r} \left([\delta(y)]^2 \left| \overline{\varphi}_- - W_0 \varphi_+ \right|^2 + [\delta(y - \pi)]^2 \left| \overline{\varphi}_- - W_\pi \varphi_+ \right|^2 \right) + \mathcal{O}\left(\frac{|\varphi|^4}{M_5^3 r} \right) \,.$$

- Clearly we can eliminate singularities with zero fields
- But we eliminate potential too in the process!
- Result of no-scale potential
- So we need to break no-scale
- Can happen naturally at loop level

Superpotential as Source -with No-Scale Breaking

$$\mathcal{L}_{\mathrm{D}} = -3e^{2\sigma} \int d^{4}\theta \ \left(-\frac{8\beta}{9} \mathcal{V}_{\Sigma}^{-2} + \mathcal{V}_{\Sigma} \right) \left[\Sigma_{a}^{\dagger} \left(e^{-2g_{c}\sigma_{3}V} \right)_{b}^{a} \Sigma^{b} - \Phi_{a}^{\dagger} \left(e^{-2g_{h}\sigma_{3}V} \right)_{b}^{a} \Phi^{b} \right]^{2/3}$$

•We can't solve all F terms=0 but can solve delta squared term in potential vanishes!

$$V|_{\text{sing.}} = \frac{16}{r} \left([\delta(y)]^2 \left| \overline{\varphi}_- - W_0 \varphi_+ \right|^2 + [\delta(y - \pi)]^2 \left| \overline{\varphi}_- - W_\pi \varphi_+ \right|^2 \right) + \mathcal{O} \left(\frac{|\varphi|^4}{M_5^3 r} \right)$$

$$\Delta V|_{\text{sing.}} = \frac{16\beta}{9M_5^3 r^4} \left\{ \left[\delta(y) \right]^2 \left(\left| \overline{\varphi}_- \right|^2 - 17 \left| W_0 \varphi_+ \right|^2 + \frac{16}{8W_0} \left(\overline{\varphi}_-^{\dagger} \varphi_+^{\dagger} + \overline{\varphi}_- \varphi_+ \right) - 9W_0^2 M_5^3 \right) + \left[\delta(y - \pi) \right]^2 \left(\left| \overline{\varphi}_- \right|^2 - 17 \left| W_\pi \varphi_+ \right|^2 + 8W_\pi \left(\overline{\varphi}_-^{\dagger} \varphi_+^{\dagger} + \overline{\varphi}_- \varphi_+ \right) - 9W_\pi^2 M_5^3 \right) + \mathcal{O} \left(\frac{|\varphi|^4}{M_5^3 r} \right) \right\}$$
(4.

These terms can be made to cancel for $\varphi_+ = 0$ and

$$\overline{\varphi}_{-}(0) = r^{-3/2} W_0 \sqrt{\beta}, \qquad \overline{\varphi}_{-}(0) = r^{-3/2} W_{\pi} \sqrt{\beta}.$$
 (4.

$$V_{\text{eff}} = \frac{4k\beta}{r^3} (4+2\epsilon) \rho^{(4+2\epsilon)} |W_0 - W_\pi \rho^{-\epsilon}|^2 + \mathcal{O}(\rho^8).$$

W plays role of J! SUSY soln so again not neg energy

Status...

- We found a viable model with loop no-scale breaking and superpotentials on branes
- But that did not lead to negative energy

Now Finally: Negative Energy

- Reminder that conventional 4d anomaly mediation relies on negative energy that sources FC^2~V, where V is negative energy cancelling positive susy breaking energy
- We clearly need two things
 - Break No-Scale
 - **Bulk** superpotential
 - Solely boundary superpotentials doesn't work
- We present two types of breaking:
 - I: β kinetic term correction (as above) and W_{bulk}
 - $_$ II: W_{bulk} and condensate

Breaking No-Scale With Loop Corrections

- Add correction to kinetic term
 - Notice here we are assuming stabilizing through SUSY GW
 - As before, F_c no longer contrained to be ~0
 - F_{Σ} equation relates F_{C} to βF_{Σ}
- Also include constant *bulk* superpotential

hypermultiplet F-terms, and can now be solved to determine F_{Σ} . The result is:

$$F_{\Sigma} = \frac{g_h M_5^3 r^5}{\beta} \varphi_+^{\dagger} \varphi_-^{\dagger} e^{\sigma} + \frac{(r\beta + 3M_5^4 r^5)}{6\beta M_5^2} (F_{C_+} C - F_{\Phi_+} \varphi_+^{\dagger} - F_{\Phi_-} \varphi_-^{\dagger}) \cdot$$

Assuming φ_{\pm} vanish, the F-terms for Σ and the compensator are given by

$$\begin{split} F_{\Sigma} &= -M_5^2 r W_{\text{bulk}} \, e^{\sigma(y)} + \mathcal{O}(\beta) \,, \\ F_{C_+}^{\dagger} &= -\frac{2\beta \, W_{\text{bulk}}}{M_5^{3/2} r^4} \, e^{\sigma(y)} + \mathcal{O}(\beta^2) \,. \end{split}$$

The leading correction to the potential from the bulk superpotential is then:

$$\Delta V_{\text{eff}} = -\frac{M_5\beta}{kr^4} \left(1 - e^{-4k\pi r_c}\right) |W_{\text{bulk}}|^2 + \mathcal{O}(\beta^2) \,.$$

This term is negative for $\beta > 0$ due to the constant F_{α} in the bulk generating

Success! Negative energy

Alternative:

Break No-Scale: Gaugino Condensate

- Previous model assumes that radion independenty stabilized
 - One important lesson is that stabilizing radion is not the same as breaking no-scale
- Next model we stabilize both at same time
- Add gauge group to bulk
- Assume gaugino condensation
 - Strange in 5d
 - Makes sense only at low energy below KK scale
 - So 5d bulk potential constant related to zero mode

Model

$$\delta \mathcal{L} = \frac{3}{2} \left[\int d^2 \theta \, i \Sigma \, W^{\alpha} W_{\alpha} + \text{h.c.} \right]$$
$$\Delta \mathcal{L}_{\lambda} = -2e^{3\sigma} \left[\int d^2 \theta \, C_+^2 W_{\lambda} e^{-\alpha \Sigma} + h.c. \right]$$

Also include constant superpotential in bulk

$$F_{C_{+}}^{\dagger} = \alpha e^{\sigma(y) - M_{5}r\alpha} M_{5}^{5/2} W_{\lambda}, \quad F_{\Sigma}^{\dagger} = -\frac{M_{5}e^{\sigma(y)}}{3} \left(3M_{5}rW_{\text{bulk}} + e^{-M_{5}r\alpha} W_{\lambda} (3 + 2M_{5}r\alpha) \right)$$

 $\boldsymbol{\alpha}$ indicates no-scale breaking

$$V_{\text{ge I}} = \frac{\alpha M_5^4}{6kr} \left(1 - e^{-4k\pi r}\right) e^{-M_5 r \alpha} \left(3M_5 r W_{\text{bulk}}^{\dagger} W_{\lambda} + |W_{\lambda}|^2 (3 + \alpha M_5 r) e^{-M_5 r \alpha} + h.c.\right)$$

Potential at minimum

- Note *FC*, negative energy both set by no-scale breaking gaugino condensate
- Also note we can stabilize radion without hypermultiplets

$$2|W_{\lambda}|^2 e^{-M_5 r \alpha} (3 + 6M_5 r \alpha + 2(M_5 r \alpha)^2) + 3(M_5 r \alpha)^2 \left(W_{\lambda}^{\dagger} W_{bulk} + W_{\lambda} W_{bulk}^{\dagger}\right) = 0.$$

$$V_{\text{gc I}}|_{\text{min}} \simeq -\frac{\alpha^2 M_5^5}{3k} e^{-2M_5 r \alpha} |W_\lambda|^2$$

Again, success; negative energy

Gaugino Condensate with Brane Superpotential

$$F_{\Sigma}^{\dagger} = -\frac{M_5 e^{\sigma(y)}}{3} \left[W_{\lambda} e^{-M_5 r \alpha} \left(3 + 2M_5 r \alpha\right) + 6W_0 \delta(y) \right]$$

$$V_{\rm gc\,II} = \frac{\alpha M_5^4}{3kr} e^{-M_5 r \alpha} \left(6kr W_{\lambda}^{\dagger} W_0 + \frac{1}{2} (3 + \alpha M_5 r) |W_{\lambda}|^2 e^{-M_5 r \alpha} + h.c. \right)$$

$$V_{\rm gc\,II}|_{\rm min} = -\frac{\alpha^2 M_5^5 e^{-M_5 r \alpha} |W_\lambda|^2}{3k} = -\frac{\left|\langle e^{-\sigma} F_{C_+} \rangle\right|^2}{3k}$$

- Minimum like before
- But here we find supersymmetry breaking
- Surprising aspect is that integral of F_{Σ} vanishes
- So low-energy theory very similar to bulk superpotential case

Effective Theory and 4d Anomaly Mediation

- Note that the only case where our low-energy theory matches "naïve EFT" where we integrate over superpotential is flat extra dimensions
 - Low-energy (4d) theory remains no-scale
 - Superpotential constant in bulk
- All other cases would give wrong low-energy theory

EFT and Anomaly Mediation

- Also note that boundary superpotentials can yield brane field "anomaly mediation"
 - Not communicating between branes, just local to wherever W sits
- Such terms must be included explicitly in 4d theory
- Same when F_{Σ} nonvanishing

4d EFT

- However, 4d EFT does generate conventional anomaly mediation
- We see how and why it accommodates universal form
- In the 5d theory associated with constant superpotential and constant F_c

Up to possible warp factor

So Back to Original Question

- How is 5d result consistent with 4d EFT
- Answer is 4d theory reproduces only anomaly-mediation that arises from a bulk superpotential
 - Since has definite y dependence not so surprising it can be consistent with single FC in 4d theory
- However, in 4d theory FC determines both anomaly-mediation and negative energ
 - Not true in 5d theory
- There are nonzero F terms whose effects must already be included in 5d theory
 - Boundary FC or Fsigma
- These supersymmetry breaking terms not generated in 4d theory

Comment on KKLT

- This model was not KKLT
- We had radion, gaugino condensate in bulk
- KKLT has brane radion, brane condensate
- They assume no-scale structure of bulk not present
 Integrated out all other moduli
- We are doing a toy model to work this out too
- Seems you do get SUSY breaking in our toy model, unlike claim from 4d EFT (stay tuned)

Conclusions

- In reality, we did full N=2 broken to N=1 on orbifolds
- Showed constraints imposed by bulk no-scale structure
- Included breaking through loop effects or gaugino condensate
- Found EFT must be derived at level of potential
 - Exception flat case when supersymmetry preserved
- Also included superpotential
 - Showed needed superpotential to be in bulk to get negative energy
 - Boundary superpotentials are essentially sources (but can also lead to Scherk Schwartz supersymmetry breaking
 - Associated with positive or zero energy
- For future, points to correct way to deal with supersymmetry on singular spaces, including string theory