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What is the CC problem?

In QFT, corrections to vacuum energy 
density scales like 





Observed value is


 


In GR, vacuum energy gravitates. 
Cosmological observations require 


δρQFT
vac ∼ Λ4

UV

ρobs
vac = ρbare

vac + δρQFT
vac

ρobs
vac ∼ M2

plH
2
0 ∼ (meV)4

Comes from 
UV boundary 

condition

Comes from 
quantum corrections 

up to cut-off
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Step 2: Fixing the prediction
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Vacuum solutions have
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plGμν = − Λtotalgμν

where measured CC is ;Λtotal = Λ + ΛQFT
 comes from the 4-forms,  is the renormalised vacuum energy.Λ ΛQFT

Euclidean path integral suggests  P (Λtotal) ∝ e−SE = e9M4
pl /Λtotal

Λ = 0 preferred

Problems: No dynamical mechanism for adjustment, Euclidean QG is ill-defined beyond perturbation 
theory
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Landscape of vacua labelled by N

Flux jumps across by one unit across a membrane  Δ(⋆F ) = ± q
Scan landscape with nucleation of membranes. 

Problems: Near Minkowski, want a dense landscape with  which requires a tiny charge 

. 

ΔΛtotal ≲ M2
plH

2
0

q ≲ H2
0

M4
pl

|ΛQFT |

Gaps in the landscape are always tiny - takes ages to neutralise the CC; rapid expansion dilutes away all 
matter.

! 
EMPTY UNIVERSE 
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2
0 |ΛQFT | ∼ M4

pl, q ∼ 0.02M2
pl, n ∼ 100

No empty universe problem.  Our vacuum selected anthropically
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CC of  
parent vacuum 

 S = sgn(X − 1)

X =
4M2

pl (Λparent − Λdaughter)
3τ2 ≈

4M2
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New insight: Membrane nucleation rate  where the bounce B 
has a potential pole as the parent vacuum  approaches Minkowski


Specifically, as parent vacuum approaches Minkowski





If  we see that  as  

Γ ∝ e−B

B ∼
6M4

plΩ3

Λparent
(1 − S) +

8M6
plΩ3

τ2X(X − 1)2
[(X − 1)2(1 − S) + 2S]

X < 1 B ∼
12M4

plΩ3

Λparent
Λparent → 0

 S = sgn(X − 1)
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Effective gravity equation: κ2Gμν = Tμν −
1
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⟨T⟩gμν

Separate  into vacuum energy + local excitations Tμν Tμν = − ΛQFTgμν + Tlocal
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1
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Local vacuum energy sequestering
Kaloper, Padilla, Stefanyszyn, Zahariade 2015


Concern over lack of additivity of action 
SAB + SBC ≠ SAC

A

x1

x2

xN-1

B

=
Z

dx1 . . . dxN�1e
i
~

P
i L(ti)�t =

Z
Dxe

i
~ SAB [x]

𝒜A→B = ⟨B, tB |A, tA⟩ = ∫ d x1…d xN−1⟨B, tB |xN−1, tN−1⟩⟨xN−1, tN−1 |xN−2, tN−2⟩…⟨x1, t1 |A, tA⟩ = ∫ d x1…d xN−1 e
i
ℏ ∑i L(ti)δt = ∫ 𝒟x e

i
ℏ SAB[x]
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Kaloper, Padilla, Stefanyszyn, Zahariade 2015

Enter the 4 forms:  and F4 = d A3
̂F4 = d ̂A3

S = ∫ d4x g [ κ2(x)
2

R−Λ(x)+ℒmatter(gμν, Ψ)] + ∫ σ( Λ(x)
μ4 ) F4 + ̂σ( κ2(x)

M2
Pl ) ̂F4 .

 and  suppresses local fluctuations in  and δA3 δ ̂A3 κ Λ
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2 ̂σ′ 
M2

pl
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σ′ 
μ4

Φ
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Adding kinetic terms for the 4 forms doesn’t spoil the cancellation (see Padilla 2019 and El Menoufi, Padilla, Nagy, 
Niedermann 2019)
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This is subtly different to Vacuum Energy Sequestering. Cf Carroll and Remmen 2017



The take-home message
At the heart of the CC problem is this 
equation:





4 forms are great for model builders 
interested in this because they gravitate 
like a CC and can be a way to loosen 


Leads to a landscape of vacua labelled by 
4 form flux


But the big question is: how do we fix the 
effective CC at late times?

• Probabilities?

• New global dynamics?

• Or something else?

M2
pl⟨R⟩ = 4Λ − ⟨T⟩

Λ
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