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What is the CC problem?

In QFT, corrections to vacuum energy Comes from Comes from
density scales like UV boundary quantum corrections
QFT 4 condition up to cut-off

OPyac ~ My
. BARE
Observed value is VACUUM
ENERGY LOé) :
obs _ _bare QFT CORRECTIONS
Pvac = Pvac T OPyac s 4B

In GR, vacuum energy gravitates.
Cosmological observations require

Plae ~ MpHg ~ (mev)*
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We want A to be adjustable, not fixed

Enter four forms:

1
F = m ”mﬁdx” Adx’ Adx®Adx" where Foop = 4a[ﬂAyaﬂ]

1
The canonical action is Sg = {d“xﬂ /—8 [—meaﬁF"mﬂ]
with en momentum tensor: T””—L FHapY pv —l wg o Fapro
e ergy omentu ensor:. F == 3' aﬂ]/ 88 aﬁyﬁ

Field equations, d(xF) =0, where * F' = Fﬂmﬂe”mﬁ; implies no local dynamics and
constant flux, * F =c.

. and so this gravitates like a CC, T* = — —c?gh*
F 2

Adjust the flux and you adjust A



Step 2: Fixing the prediction
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Hawking 1984: GR + four form

4 M;, 1 p
S=|d*x\/—g 5 R—24'FwaﬂF””"‘ + matter

Vacuum solutions have
2 _
MplG,m/ - A’ro’ralgﬂu
where measured CC is Ayotq = A + AgFT:

A comes from the 4-forms, AQpT is the renormalised vacuum energy.

4
Euclidean path integral suggests P (A’ro’ral) x e~ = ¢"Mr'Motal

A = 0 preferred

Problems: No dynamical mechanism for adjustment, Euclidean QG is ill-defined beyond perturbation
theory
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Charged membranes

Brown and Teitelboim 1987 & 1988: GR + four form + charged membranes

N My o1 1 -
R Jb |kd4x -8 [TPR 241 FﬂvaﬂFﬂmﬂ] + matter — Q[ ?Aijkdél AdE A dEF — TJ d3§\/——}/
u e !

membrane

membrane

Flux is now quantised x ' = Ng and so vacua have
1
VG A A 2.2
pl Py = T ’ro+alg;w with total — 2N q-+ AQFT

Landscape of vacua labelled by N

Flux jumps across by one unit across a membrane A(xF) =+ ¢

Scan landscape with nucleation of membranes.

Problems: Near Minkowski, want a dense landscape with AAtgtq S M;ng which requires a tiny charge

4
g3 H? i.
| AqFT]

Gaps in the landscape are always tiny - takes ages to neutralise the CC; rapid expansion dilutes away all
matter.
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Charged membranes

Bousso and Polchinski 2000: GR + lots of four forms + charged membranes

1
— 4 4 FO preap ) (@) g gi j k _ 3 [—
_Jb d*x\/—g R+ma’r’rer+ Z { d*x\/—g [ S Eoust ] q,J 3'Ajkd§/\d€ AdE TJ d’E\/ }’}
ulk membrane membrane

bulk

Now we have a landscape living on an n-dimensional lattice:

Atotal = Z N2 + AQFT
=1

Near Minkowski, desired density of landscape AAjgtq] S MleHg can be achieved
through large n, even for near Planckian charges.

Eg: Can get AAyotq ~ My H; as desired, for |Ager| ~ My, g ~ 0.02M>, n ~ 100

No empty universe problem. Our vacuum selected anthropically



The CC is probably still zero?



The CC is probably still zero?

Padilla, Pedro, Yang 2023 & 2024; See also Kaloper & Westphal 2022;
GR + four forms + charged membranes

New insight: Membrane nucleation rate I" & e ~? where the bounce B
has a potential pole as the parent vacuum approaches Minkowski



The CC is probably still zero?

Padilla, Pedro, Yang 2023 & 2024; See also Kaloper & Westphal 2022;
GR + four forms + charged membranes

New insight: Membrane nucleation rate I" & e ~? where the bounce B
has a potential pole as the parent vacuum approaches Minkowski

Specifically, as parent vacuum approaches Minkowski

6M Q) 8MOQ
B —L(1-8) + ——L——
Aparen’r " X(X = 1)

(X — D?*(1 = S) +25]



The CC is probably still zero?

Padilla, Pedro, Yang 2023 & 2024; See also Kaloper & Westphal 2022;
GR + four forms + charged membranes

New insight: Membrane nucleation rate I e~ 8 where the bounce B
has a potential pole as the parent vacuum approaches Minkowski

Specifically, as parent vacuum approaches Minkowski

6M5Q2, 8M €2
B ~ (1-8)+— 2[(X—1)2(1—S)+2S]
Aparen’r " X(X = 1)

CC of
parent vacuum




The CC is probably still zero

Padilla, Pedro, Yang 2023 & 2024; See also Kaloper & Westphal 2022;
GR + four forms + charged membranes

New insight: Membrane nucleation rate T" & e™5 where the bounce B
has a potential pole as the parent vacuum approaches Minkowski

Specifically, as parent vacuum approaches MinkowskKi

6MQ; 8M Q3
B ~ (1-8)+— 2[(X—1)2(1—S)+2S]
Aparent XX - 1)
12M7,Q;
If X <1 we see thatB'™™ as Apgrent = 0

Aparen’r



Is the CC probably still zero?

Mishra, Padilla, Pedro, Saffin work in progress

We are carrying out a numerical analysis of relative bubble
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Mishra, Padilla, Pedro, Saffin work in progress

We are carrying out a numerical analysis of relative bubble
abundances at late times (based on old work of Garriga, Vilenkin,

Schwar’rz:ﬂerlov and others)
Early days, but...
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Vacuum energy sequestering

Kaloper & Padilla and many others 2013-
Idea: Global modification of gravity; fix (R) using global constraints

Start with GR, promote A and Planck mass to be global variables

A
[d“xF[ R—A+Zmatter(8" (D)] <_4>

U
okt = Jd“x\/—gR:O — (R) =

1
Effective gravity equation: K‘2GW = TW — Z(T)gﬂ,/

Separate pr info vacuum energy + local excitations TW = — AQFTg/w + T/lgcal

1
Vacuum energy drops out! K,ZGW = TLC;COI — Z<Tlocal>gw



Local vacuum energy sequestering

Kaloper, Padilla, Stefanyszyn, Zahariade 2015

Concern over lack of additivity of action S,z + Sgc # Sic

£z . £
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Kaloper, Padilla, Stefanyszyn, Zahariade 2015
Enter the 4 forms: F, = dA; and F, = dA,
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Kaloper, Padilla, Stefanyszyn, Zahariade 2015
Enter the 4 forms: F, = dA; and F, = dA,
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Local vacuum energy sequestering

Kaloper, Padilla, Stefanyszyn, Zahariade 2015
Enter the 4 forms: F, = dA; and F, = dA,

2
> = J d'x /g [K EX) R=A)+Zmatter(8", V)

A®x) NESEOR
+[G< p >F4+G(Ml%l >F4.

0A; and 5143 suppresses local fluctuations in k and A

ja /

26" 4 o

2 4 _ 4 o —

oKk- = [d X4/—8R = —ZZCI) and 6A = [d X/ g—lu4(I)
M;

where the 4 form fluxes ® = ‘F4 and ® = Jﬁ4

1 , k% @

1
. . . . 2 _ _ o
Effective gravity equation: °G,, =T, 2 (T)8,, + SH 2 ry 8w
Separate T, into vacuum energy + local excitations T, = — AQr78,, + TLODCC‘I
1 1, k% @
2 — 7local local 4
Vacuum energy drops out! k“G,, = T,*% — Z<T )8 T SH Mgla’gg’w

Adding kinetic terms for the 4 forms doesnt spoil the cancellation (see Padilla 2019 and El Menoufi, Padilla, Nagy,
Niedermann 2019)
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Allow operators with anisotropic scaling y — Ay, x¥ — A*x* eg for massless scalar
1
de d'x >4 ( (O, + a§Z) &,

For gravity, must abandon full 5D diffs in favour of foliation preserving diffs
y =y =&, x* = x# = &H(x, y).
Work in the projectable limit: ds® = N*(y)dy? + 8, (X, Y)(dx! + NF(x, y)dy)(dx” + N*(x, y)dy)

Terms with z = 0 scaling
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As before, vacuum energy drops out!
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This is subtly different to Vacuum Energy Sequestering. Cf Carroll and Remmen 2017



The take-home message

At the heart of the CC problem is this
equation:

M (R) = 4A —(T)

4 forms are great for model builders
interested in this because they gravitate

like a CC and can be a way to loosen A

Leads to a landscape of vacua labelled by
4 form flux

But the big question is: how do we fix the
effective CC at late times?

® Probabilities?

e New global dynamics? '\

e Or something else? 1
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