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How well do we know the electron?

* LEP and SLC measured the Z
couplings to charged leptons to
per-mille precision.

* Mixing with heavy VL leptons
modify these couplings (very
stringent limits on mixing).

Nuclear Physics B224 (1983) 107-136
© North-Holland Publishing Company

THE POSSIBILITY OF NEW FERMIONS WITH AI =0 MASS*
F. DEL AGUILA'
Physics Department, University of Florida, Gainesville, FL 32611, USA

M.J. BOWICK?

California Institute of Technology, Pasadena, CA 91125, USA and Physics Department, University of
Florida, Gainesville, FL. 32611, USA

Received 15 June 1982
(Revised 15 March 1983)

In the Glashow-Weinberg-Salam model the fermions have AI =3 masses from the breaking
of the weak SU(2) gauge symmetry. In many enlarged models, such as those from grand unified
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How well do we know the electron?
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How well do we know the electron?

* LEP and SLC measured the Z
couplings to charged leptons to
per-mille precision.

* Mixing with heavy VL leptons
modify these couplings (very
stringent limits on mixing).

* Only true if VLL contribute to the
EFT at tree-level, dimension 6

A~
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Effects of new leptons in electroweak precision data
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How well do we know

* LEP and SLC measured the Z
couplings to charged leptons to
per-mille precision.

* Mixing with heavy VL leptons
modify these couplings (very
stringent limits on mixing).

* Only true if VLL contribute to the
EFT at tree-level, dimension 6.

* But mixing with several new VLL
can induce cancellations
(protected by symmetries)
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the electron?
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The model: degenerate bi-doublet

* Two new degenerate VLL with identical coupling to the SM

leptons N o
A1 Lr = ( ) , Aszrr= < ) :
—1/2 —3/2

L= Lsv+ AP 1 + Ag[il) 3 — X' (A1¢ + Azd)e; + h.c.
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The model: degenerate bi-doublet

* Two new degenerate VLL with identical coupling to the SM

leptons
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The model: degenerate bi-doublet

* Two new degenerate VLL with identical coupling to the SM

leptons N o
A LR = ( ) , Az rLr= < ) ;
—1/2 —3/2

L= Lsv+ AP 1 + Ag[il) 3 — X' (A1¢ + Azd)e; + h.c.
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The model: degenerate bi-doublet

* Two new degenerate VLL with identical coupling to the SM
leptons

* Tree-level, dimension 6 effects only in Yukawa couplings.

 What are the current (and future) constraints?

— Direct searches: single and pair production.

- Tree |level, dimension 6 (precise measurement of lepton Yukawas).

- Tree level, dimension 8.
= One-loop dimension 6.
- Theoretical constraints.

— Future prospects.

How large is lepton mixing? J. Santiago (UGR)

11



Direct searches: single production

* Single production only considered for HNLs (large mixing).

(a) eee signal through N — Zv, (b) eee/eep signal through N — We

e/u

(c) eee/eep signal through Y — We
How large is lepton mixing¢ ). >anuago (uuk)
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Direct searches: single production

* Single production only considered for HNLs (large mixing).

HNLs

(c) eee/eeu signal through Y — We
How large is lepton mixing¢ ). >anuago (uuk)
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Direct searches: single production

* Single production only considered for HNLs (large mixing).

How large is lepton mixing¢ ). >anuago (uuk)

Our model
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Direct searches: single production

* Single production only considered for HNLs (large mixing).

* We expect a factor of 4 (2 channels twice BR) except for the Z

contribution.

—e— M=100 GeV —e— M=750 GeV
4.01 M=250 GeV —e— M=1000 GeV
—e— M=500 GeV —e— M=1350 GeV
3.5 .”—0———40”’—.’_‘
S . -« ———o——o—1
S
53.0
2.51
L 2 ’—__.‘————-.———.——l
2.0

0.1 0.2
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We use these factors to rescale the
current reach from single
production in our model.
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Direct searches: pair production

* Pair production is independent of the mixing.

* We can recast VLL doublet searches in pair production (we have
more states with different couplings and BRs)

1390 GeV, mixing with e,
M > ¢ 1430 GeV, mixing with p,

1210 GeV, mixing with 7,

How large is lepton mixing? J. Santiago (UGR)
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How well do you know the electron?
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Tree |level dimension 6

* At tree level dimension 6 we only modity Yukawa couplings

o, )
L /
w Y; m;
aa] s (Y
€
kr = 0.93+0.07, 68%CL. [ATLAS 2207.00092]
2 (%) <014 @ 95% CL No relevant bounds for electron or muon

* Higgs mediates flavour violating processes (suppressed by light
Yukawa couplings). Only mu-e conversion place a constraint.

How large is lepton mixing? J. Santiago (UGR)
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Tree |level dimension 8

* Attree level dimension 8 we generate many operators but no
contributions to 3-point vertices.

* Custodial protection partially survives at dimension 8.

* Leading constraints from e+e- — W+ W- (still not competitive).
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One-loop dimension 6: tlavour violation

* At one loop, mass dimension 6 order many contributions are
generated.

* Lepton flavour is violated when mixing with more than one
generation (only AL =1)

BR(p — 3e) < 10712 [22] BR(1 — 3¢) < 2.7-1078 [23]
BR(p—ey) <3.1-1077 [24] | BR(r — ey) < 3.33-107° [25]

(
BR(puAu — eAu) <7107 [26] | BR(T — py) <4.2-107° |27]

BR(T — 3u) <1.9-107% 28] BR(T — pee) < 1.8-107% [23]

How large is lepton mixing? J. Santiago (UGR)
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One-loop dimension 6: tlavour violation

* At one loop, mass dimension 6 order many contributions are
generated.

* Lepton flavour is violated when mixing with more than one
generation (only AL =1)

(1581075, [ — en],
2.70-107°, [p — e conversion in Aul,
| 2.89- 1074, [p — 3el,

[0.012, [T — e,

= 0.091, [r— 3¢,

(0.014, T — uyl,
0.113, [r — peel,
| 0.116, [T — 3pl.
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One-loop dimension 6: flavour preserving

* At one loop, mass dimension 6 order many contributions are
generated.

* EWPD and Higgs physics are the most constraining (in general).
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One-loop dimension 6: flavour preserving

* At one loop, mass dimension 6 order many contributions are

generated.

* EWPD and Higgs physics are the most constraining (in general).
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One-loop dimension 6: flavour preserving

* At one loop, mass dimension 6 order many contributions are
generated.

* EWPD and Higgs physics are the most constraining (in general).

* Double Higgs production starting to become relevant.

{ Svtay PR 1 2m’2 M

Ky =1-— =1-—

A may 672 \ M2 ) m7v?
—1.2< Ky <T7.2. [ATLAS 2406.09971]

1 4
m'? exp 2 Uzmzﬁr 3 0.5 TeV '\ 3
gz S ((1+ D v M N
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One-loop dimension 6: flavour preserving

————— Direct single
— = Direct pair

- |ndirect Higgs + EWPO
—-— Di-Higgs production
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Theoretical constraints

* Mild constraints on the mixing imply large values of couplings being
probed (strong coupling?).

e Perturbative unitarityj )\/ 5 4 [Allwicher, Arnan, Barducci, Nardecchia 2108.00013]

* Stability of the potential: A < 2

V() =2 (00) + ca(0T9)? + c6(070) + ex(dT ) + . ..

025} M = 2.5 TeV
SRV
2 HH 47‘{'2 K| :
5 )\’4 7 015:—
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/\’6 0.10f
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/\!8 V 0.05
CR I
| 1272 M4 / _
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Theoretical constraints

* Mild constraints on the mixing imply large values of couplings being

probed (strong coupling?).

* Perturbative unitarity: A" <4

* Stability of the potential: A < 2

V(¢) = c2(d'¢) +ca(¢Td)? + cs(¢Td) + cs(dT o)t + . ..

NZM?

2 2
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[Allwicher, Arnan, Barducci, Nardecchia 2108.00013]

(can be lifted with scalar quadruplet)

[Durieux, McCullough, Salvioni, 2209.00666]
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Theoretical constraints

* Mild constraints on the mixing imply large values of couplings being
probed (strong coupling?).

 Perturbative unitarity: )\’ SJ 4 [Allwicher, Arnan, Barducci, Nardecchia 2108.00013]

* Stability of the potential: X" <2 (can be lifted with scalar quadruplet)

e Landau Pole: )\’ 5 2 _ 4 [Durieux, McCullough, Salvioni, 2209.00666]

5

—— Landau pole

0

1 2 3 4

. . ndau
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Current constraints

————— Direct single
0.5 — = Direct pair
e ee-»WW (dim 8)
—— Indirect EWPO
- |ndirect Higgs + EWPO
0.4 ——- Di-Higgs production
—— Potential stability

$0.3
3
E
oN
[ \
0.2 / H%
| \.
I N\
\.\.
| \'\,
| T~
01 N N
| -
I
] T~
I B—
0.0 !

500 1000 1500 2000 2500 3000 3500 4000 4500

. . M (GeV)
How large is lepton miXirig; ;. sunuagy \wuny 29



Current constraints

Direct single

Direct pair

Indirect EWPO + g-2

Indirect Higgs + EWPO + g-2
—-—- Di-Higgs production
—— Potential stability
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Future constraints

* Future experiments will further constrain lepton mixing:

* HL-LHC: increased reach in direct searches and more precise Higgs
measurements Collider reachB [Salam, Weiler]

* FCC-ee:increased precision on EWPD

* FCC-hh:increased reach in direct searches and high precision Higgs
physics.
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Future constraints o

* Future experiments will further constrain lepton mixing:

How large is |

HL-LHC: increased reach in direct searches and more precise Higgs
measurements

FCC-ee: increased precision on EWPD

FCC-hh:increased reach in direct searches and high precision Higgs
physics.
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How well do we know the electron?

* Fairly well

Electroweak limits on physics beyond the Standard Model

Jorge de Blas'2
" Department of Physics, University of Notre Dame, Notre Dame, IN 46556, USA

Lepton 95% C.L. EWPD limit on mixing sz,

L d.,dp)y Only e Only Only 7
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( g:,) (1, 2)_% 0.028 0.028 0.046
E‘I‘

[ N ] (1,3) 0.019 0.017 0.030
£
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How well do we know the electron?

* Not as well as we thought!

* Tailored searches might carve
out part of parameter space.

* Future colliders will shrink the
window significantly.
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