Dark Sector Searches at Belle and Belle II on behalf of the Belle and Belle II collaborations

Eiasha Waheed PASCOS 2025, Durham, UK

Outline

- Introduction to dark matter
- *B*-factories
- Belle and Belle II experiment
- Dark sector searches at Belle and Belle II Experiment
 - Inelastic dark matter with a dark Higgs 1.
 - Axion-like-particle (ALP) searches

2. $B \rightarrow Ka(\rightarrow x^+x^-)$ i.e. Long Lived ALP in *B* decays

3.
$$B \to K^{(*)}a(\to \gamma\gamma)$$

• Summary and Conclusion

2

Dark Sector - Introduction

there can be "portals" acting as indirect interactions. [arXiv:1311.0029]

• The particles in the hidden/dark sectors (DS) do not interact with the Standard Model (SM) particles directly, but

Portals	Mediators	Field syr
Vector	Dark photon, Z' boson	A'
Scalar	Dark scalar/Dark Higgs	ϕ
Pseudoscalar	Axion/ALP	a
Fermion	Sterile Neutrino	N

dark sector

Dark sector covered by e^+e^- colliders

- The dark matter (DM) scale is unknown; completely different search strategies depending on the mass of dark matter
- DM weakly couples to SM particle annihilation at accelerators
- e^+e^- collider can access the mass range favoured by light dark sector
- Typical process for to look for dark sector mediators : $e^- + e^+ \rightarrow \text{SM-particle} + \text{Mediator}$ $B(\text{or other hadron}) \rightarrow \text{SM-particle} + \text{Mediator}$
- Important features for DS searches at e^+e^- include
- Clean, low-background, energy-conserving environment with closed kinematics
- High luminosity and cleanliness compensate for small cross sections

Dark Sector and Dark Matter at *B*-factories

- Different scenario arise, depending on the dark sector mediator and dark matter mass hypothesis
 - Negligible interaction probability of DM with the detector
- Visible decay to SM particles: allow to search for dark sector mediators
- Invisible decay to dark matter candidates: allow us to search for DM or dark sector mediators in final states with missing energy
- Displaced vertices: weaker couplings lead to long lifetime and therefore long decay length
 - Lifetime is an additional player: proportional to some inverse power of the coupling and of the mediator mass
 - decay-length < O(1) m: displaced decay vertices
 - decay-length > $\mathcal{O}(1)$ m: decay outside the detector (invisible)

B-factories

- Asymmetric e^+e^- energy beam colliders optimized for the production of B meson pairs
- Collisions occur at $\Upsilon(ns)$ resonances (bound bb states), mainly at $\sqrt{s} = 10.58 \text{ GeV}$
- Experiments operating at *B*-Factories:
- First generation:
 - BaBar@PEP-II, US (1999-2008) \rightarrow Collected 0.5 ab⁻¹
 - Belle@KEKB, Japan (1999-2010) \rightarrow Collected 1 ab^{-1}
- Second generation:
 - Belle II@SuperKEKB, Japan (2018-Now)

Highest peak luminosity achieved by first generation *B* factory $L > 10^{34} \text{cm}^{-2} \text{s}^{-1}$

SuperKEKB

- SuperKEKB is a 2nd generation asymmetric e^+e^- collider at the $\Upsilon(4S)$ energy located at Tsukuba (Japan).
- SuperKEKB is major upgrade of KEKB
- Target is to achieve highest instantaneous luminosity (× 30 KEKB)
- **bb** • SuperKEKB has been designed as a *B*-factory but ideal environments to study D mesons, τ leptons and dark sector physics

B-factory: ~ $1.1 \times 10^9 B\bar{B}$ pairs per ab⁻¹ charm factory: ~ $1.3 \times 10^9 c\bar{c}$ pairs per ab⁻¹ τ factory: ~ 0.9 × 10⁹ $\tau^+\tau^-$ pairs per ab⁻¹

$$\mathcal{L}=6 imes 10^{35} cm^2 s^{-1}$$

Luminosity status and projection

Collected luminosity up to now: 2019 - 2024

Long-shutdown (LS1) Several accelerator and detector maintenance and improvements

Eiasha WAHEED

- So far $L_{int} = 575 \text{ fb}^{-1} (\sim 1/2 \text{ Belle})$
- Goal: $L_{int} = 50 \text{ ab}^{-1}(50 \times \text{Belle})$
- World record: $L_{\text{peak}} = 5.1 \times 10^{34} \text{cm}^{-2} \text{s}^{-1}$
- Target: $L_{\text{peak}} = 6 \times 10^{35} \text{cm}^{-2} \text{s}^{-1}$

Restart data taking in Fall 2025

Belle II detector

- Belle II upgrade of Belle \rightarrow Hermetic detector
- Belle II key features:
 - Known initial state kinematics
 - Very clean environment
 - Excellent charged particles identification (kaon, pions, protons, electrons, muons)
 - Good neutrals reconstruction
 - γ down to 50 MeV

Dedicated triggers for low-multiplicity final states

- Only Belle II has single-photon or single-track and single muon triggers
- Possible to probe all the possible dark sector portals

Belle and Belle II have excellent sensitivity for dark sector searches in the MeV – GeV range

Inelastic dark matter with a dark Hi

- Inelastic dark matter (iDM) models can avoid cosmological constraints on dark matter
- Model with inelastic coupling between DM and SM particles could explain lack of signal in direct detection
- One such non-minimal dark sector consists of:
 - Two dark matter states (χ_1 , a stable, light particle (relic DM) and χ_2 , a long-lived particle can decay to DM
 - A' massive dark photon
 - *h*′ dark Higgs boson
- h' mixes with SM Higgs through mixing angle θ
- A' mixes with SM photon with strength ϵ
- Coupling between DM and A' is α_D .

7 free parameters; 4 masses $+ \alpha_D$, ϵ and θ

 χ_2 is search for in electrons-only final state to exploit the ECL triggers to have better trigger performance.

Inelastic dark matter with a dark Higgs

Event reconstruction require:

- Require missing energy $(\chi_1 \chi_2)$ plus four tracks in the final state
- Two displaced vertices
 - $h' \rightarrow x^+ x^-$ pointing displaced vertex
 - $\chi_2 \rightarrow \chi_1 e^+ e^-$ non-pointing displaced vertex
- **Signal selection** using requirements on pointing angles and vertex distance from the interaction point
 - very low SM background
- Search for a bump in the h' invariant $M_{h'}$
- Cut-and-count strategy for extracting signal yields
- Events rejected with h' candidates with $0.467 < M(\pi^+\pi^-) < 0.529 \text{ GeV/c}^2$ to reduce background from K_s^0 decays;
- **Expected background** estimated in data from sidebands to not rely on simulation

Belle II [<u>arXiv:2505.09705 (2025)</u>] Submitted to PRL

Inelastic dark matter with a dark Higgs

- Strong limits on $\epsilon \times \alpha_D$ and θ (dependence on other parameters)
- World-leading (model dependent) constraints on the $(\sin \theta mh')$ parameter space
- Exclusion regions at 95 % CL from this work (teal)

All constraints except for the one from this work do not require the presence of a dark photon or iDM.

Belle II [arXiv:2505.09705 (2025)] Submitted to PRL

All constraints except for the one from this work do not require the presence of a dark Higgs boson or iDM.

> Many more parameter configurations in paper

> > THE UNIVERSITY OF

MELBOURN

Axion-like-particles (ALPs)

- Axions were originally motivated by the strong CP problem \rightarrow One of the unknown of SM
- **CP** phase in strong sector pseudo-Goldstone bosons known as Axion-like particles (ALPs): $\frac{\alpha_s\theta}{8\pi}G^{a\mu\nu}\tilde{G}^{a\mu\nu}$ $\bar{\theta} \lesssim 10^{-10}$ **QCD** Axion solution $\frac{\alpha_s}{8\pi} \frac{a}{f_a} G^{a\mu\nu} \tilde{G}^{a\mu\nu}$ • visible – ALP decays to SM partial estimated detector $[a \rightarrow y]_a$ decays the CP phase • *invisible* – ALP decay south a fire terror, or to dark matter • Promote θ to a field a/f_a dynamically settles the CP nhase • Peccei-Quind the matrix Global U(1) that generates Peccei, Quinn, [PRL 38, 1440 (1977)] as a Nambu-Goldstone boson. fa is the breaking Scale. ALPs proposed as a mediators between the dark sector and ordinary matter and they ³ axion • Atlcould be cold dark matter candidates themselves. inerpreaking scale. • Attractive **dark matter** candidate, typically ma<meV.
- Beyond-SM theories in which a global UV symmetry is spontaneously broken predict • ALPs is generic pseudoscalar particles with arbitrary mass and couplings, at $\sim Ge^{\overline{Q}} \leq 10^{-10}$ • Many possible couplings for ALPs: $g_{a\gamma\gamma}$, g_{aW} , g_q and more
- The $B \rightarrow Ka$ searches are:

Long Lived ALP in B decays

- Cases for long lived particle (LLP) can be from scalar mediator (S) or a pseudo-scalar ALP (a).
 - S can mix with SM Higgs boson with mixing angle θ_s
- For couplings much weaker than the electroweak interaction, the scalar S is long-lived.
- Another possible extension of the SM introduces an ALP that couples to photons, fermions, or gluons
- Search for long-lived S that decays visibly into charged particles $B^+ \rightarrow K^+S(S \rightarrow x^+x^-) [x = e, \mu, \pi, K]$
- High performance in LLP vertex reconstruction are necessary
- First Belle II long-lived particle (LLP) search with $B^+ \to K^+$ LLP and $B^0 \rightarrow K^{*0}[K^+\pi^0]$ LLP using 189 fb⁻¹
- Displaced vertex distance from interaction region > 0.05 cm
 - displaced vertex \rightarrow low backgrounds;

Belle II [PRD 108, L111104 (2023)

Long Lived ALP in B decays

Event Reconstruction:

- Signal *B*-meson fully reconstructed by prompt *K* or K^* decay + two oppositely charged tracks that make a displaced vertex
 - Signal events are simulated for various scalar masses $0.025 < m_S < 4.78 \text{ GeV/c}^2$
- Search for a bump in invariant mass *mLLP* distribution
 - Separately for $x = e, \mu, \pi, K$
 - Separately for different lifetimes ($0.001 < c\tau < 400$ cm)

Belle II [PRD 108, L111104 (2023)

Long Lived ALP in B decays

Background rejection:

- For continuum and $B\bar{B}$ background
 - constrains on $M_{\rm bc} = \sqrt{s/4} |\overrightarrow{p_B^*}|^2 > 5.27 \ {\rm GeV/c^2} \ {\rm and}$ $\Delta E = |E_{R}^{*} - \sqrt{s/2}| < 0.05 \text{ GeV}$
 - event shape variable $R_2 < 0.45$
 - SM long-lived $K_{\rm S}^0$ mass region vetoed and used to evaluat performance (efficiencies, shapes, particle identification);⁴
- Further peaking backgrounds (ϕ , J/ψ) suppressed by tighter displacement selection;
- Background determined directly in data (robust against un-r non-peaking background)

Signal extraction:

- Search for a bump by performing fit to LLP modified mass $\frac{3}{2}$ 10²
 - Scan in step of half resolution (2 to 10 MeV)

Long Lived Scalar in B decays

- Search for an ALP in flavour-changing neutral current *B* decays
 - Highly suppressed in SM
 - New physics could appear at the same order of the SM processes
- ALP production from W^{\pm} boson in $B \to K^{(*)}a$ decays
 - $B(a \rightarrow \gamma \gamma) \simeq 100 \%$ for $m_a < m_W$
 - g_{aW} is coupling strength of *a* to *W* boson.
 - 4 kaon modes: K_S^0, K^+, K^{*0} and K^{*+}
 - Mass range: $0.16 4.50 (4.20) \text{ GeV/c}^2$ for $K^{(*)}$
- Previous limits from BaBar, which used only $B^+ \to K^+ a_{\bullet}$ Constrain mass and energy exploiting no missing and smaller dataset [PRL.1.28.131802] energy in final state

Belle analysis with 711 fb⁻¹ corresponding to 772 M $B\bar{B}$ pairs

Belle [<u>arXiv:2507.01249 (2025)</u>] Submitted to JHEP

Event reconstruction

- Signal *B* candidates reconstructed by combining a pair of photons and a *K* candidate
- vertex fit to the selected *B* candidates, constraining photon and kaon candidates to originate from IP

•
$$M_{bc} = \sqrt{E_{beam}^2 - p_B^2} > 5.27 \text{ GeV}$$

• $\Delta E = E_B - E_{beam}$ between -0.2 to 0.1 GeV

Background contributions:

- From $e^+e^- \rightarrow q\bar{q}$ (continuum)
- *B* decays $(e^+e^- \rightarrow \Upsilon(4S) \rightarrow B\bar{B})$
- Boosted decision trees (BDT) used to reject background
 - Event shape discrimination for $B\overline{B}$ vs. continuum
- $\pi^0 \rightarrow \gamma \gamma$ rejected with , additional BDT trained by calorimeter cluster variables
- Peaking background regions (π^0, η, η') in **di-photon** invariant mass $M_{\gamma\gamma}$ are vetoed.

Continuum vs. BB event shapes

Belle [<u>arXiv:2507.01249 (2025)</u>] Submitted to JHEP

Signal extraction

- Signal extracted with a scan over $M_{\gamma\gamma}$
- Steps of signal mass resolution (~8 18 MeV)
- Use $B \to Kh(\to \gamma\gamma)$ $(h \to \eta, \eta', \pi^0)$ to validate signal extraction method
- Simultaneous fit on all 4 kaon modes: K_s^0, K^+, K^{*0} and K^{*+}

Belle [arXiv:2507.01249 (2025)] Submitted to JHEP

- upper limits evaluated from simultaneous fit to for kaon modes as a function of the ALP mass, compa with existing constraints
- ALP lifetimes
 - At low masses, ALP can have long decay length
 - Signal efficiency goes down as light ALPs escap the detector (long lived ALP is taken into accou
 - This is accounted for

$$\Gamma_a = \frac{g_{aW}^2 m_a^2 \sin^4 \theta_W}{64\pi}$$

Summary

- World leading or competitive results from Belle data and even with a subset of the Belle II available data
- dark sector analyses (list in the backup)
- Results covered in this talk:

 - Search for ALPs in *B* meson decays
 - Belle II analysis: $B \to KS(\to e^+e^-/\mu^+\mu^-/\pi^+\pi^-/K^+K^-)$ [PRD 108, L111104 (2023)]
 - Belle analysis: $B \to K^{(*)}a(\to \gamma\gamma)$ [arXiv:2507.01249 (2025)], submitted to JHEP
- So far Belle II recorded ~575 fb^{-1} ; more results with higher statistics and improved analyses are in the pipeline, with reliable sensitivity projections at future luminosity.

• Belle and Belle II have set world-leading constraints on a number of models and published several additional

Belle II analysis: Search for inelastic dark matter with a dark Higgs [arXiv:2505.09705 (2025)], submitted to PRL

Snowmass White Paper: [arXiv:2207.06307 (2022)]

BACKUP

Belle and Belle II analyses

Belle II

- Search for a $\mu^+\mu^-$ resonance in $ee \rightarrow \mu\mu\mu\mu$ events Phys. Rev. D 109, 112015 (2024)
- Search for a Dark Photon and an invisible Dark Higgs in $\mu^+\mu^-$ Phys. Rev. Lett. 130, 071804 (2023)
- Search for a resonance decaying to $\tau^+\tau^-$ in $e^+e^- \rightarrow \mu^+\mu^-\tau^+\tau^-$ events <u>Phys. Rev. Lett. 131, 121802 (2023)</u>
- Search for the LFV $\tau \rightarrow l\alpha$ (invisible) decay Phys. Rev. Lett. 130, 181803 (2023)
- Search for an invisible Z' in $ee \rightarrow \mu\mu Z'$ Phys. Rev. Lett. 130, 231801 (2023)
- Search for an invisibly decaying Z' in $e^+e^- \rightarrow \mu^+\mu^-(e^\pm\mu^\mp)$ plus missing energy final states <u>Phys. Rev. Lett. 124, 141801 (2020)</u>
- Search for ALPs produced in e^+e^- collisions <u>Phys. Rev. Lett. 125, 161806 (2020)</u>

Belle

- Search for lepton-flavour-violating tau decays to ℓa <u>arXiv: 2503.22195 (2025)</u> accepted by JHEP
- Search for a dark leptophilic scalar Phys. Rev. D 109, 032002 (2024)
- Search for a heavy neutral lepton Phys. Rev. D 109, L111102 (2024)
- Search for $Z' \rightarrow \mu^+ \mu^-$ in the $L_{\mu} L_{\tau}$ gauge-symmetric model <u>Phys. Rev. D 106, 012003 (2022)</u>
- Search for the Dark Photon and the Dark Higgs Phys. Rev. Lett. 114, 211801 (2015)

Low Multiplicity Triggers

- Two-level trigger
 - Hardware-based Level 1 Trigger (L1): < 30 kHz
 - Software-based High Level Trigger (HLT): < 10 kHz
- Devised specific low-multiplicity trigger lines
 - Suppress high-cross-section QED processes without "killing" the signal
 - Precise knowledge of acceptance and efficiencies of the detector required

- Examples
 - Single-photon trigger
 - Single-muon trigger
 - Single-track trigger

Long Lived Scalar in B decays

• Interpretation as Pseudo-scalar ALP: For the model-dependent search for ALP with coupling to fermions, combined fit is performed in all relevant and kinematically accessible analysis channels, separately for various lifetimes.

- Exclusion regions in the plane of the coupling $g_V = 2v/f_a$ with the vacuum expectation value *v* and the ALP mass m_a from this work (blue).
- The constraint colored in gray with dashed outline is a reinterpretation not performed by the experimental collaboration and without access to raw data.

• 90% CL upper limits on the coupling g_{aW} as a function of the ALP mass obtained with the CLs method with simultaneous expected upper limits in the background only model.

Eiasha WAHEED

Belle [arXiv:2507.01249 (2025)] Submitted to JHEP

fit to the four kaon modes. The green and yellow bands are the ± 1 and ± 2 standard deviation ranges, respectively, for the

