$B \rightarrow D^{(*)}\tau\nu$ and $b \rightarrow s$ penguin anomalies at Belle and Belle II

Koji Hara (KEK) for Belle and Belle II collaborations

PASCOS 2025, the 30th International Symposium on Particles, Strings and Cosmology July 24, 2025

Lepton Flavor Universality Anomaly in $B \rightarrow D^{(*)}\tau\nu$ Decays

•
$$R(D^{(*)}) = \frac{\mathcal{B}(B \to D^{(*)}\tau\overline{\nu})}{\mathcal{B}(B \to D^{(*)}\ell\overline{\nu})}$$
 $\ell = e, \mu$

 Measurements so far show deviation from the SM expectation

 $\circ ~R(D) \sim 1.6\sigma$

- $\circ \ R(D*) \sim 2.5\sigma$
- \circ **Combined** ~ 3.3 σ

Evidence for $B \rightarrow K \nu \bar{\nu}$ Decays at Belle II

[Phys. Rev. D 109, 112006]

 Signal evidence of 3.5σ significance by inclusive + hadronic tag

Possible New Physics in $B \rightarrow D^{(*)}\tau\nu$ and $b \rightarrow s$ Penguin

- Deviations from the SM may indicate
 <u>New Physics (NP) effects in B decays with tau flavor</u>.
 - Charged Higgs
 - Leptoquark

. . . 10 $B^0 \rightarrow X_s \nu \bar{\nu}, K^{*0} \tau \tau, K^{(*)0} \tau \ell$ $B^0 \rightarrow D^{(*)-} \tau^+ \nu$ 8 $\tau^+, \bar{\nu}_{\tau}$ R_D(*) &R_Jψ 2σ 10⁴ W^+/H^+ 6 W^+/H^+ $R_{D^{(*)}} \& R_{J/\Psi} 1\sigma$ ν × ■ Br[$B_s \rightarrow \tau \tau$] ■ Br[B→ K^* ττ] 4 ■ Br[B \rightarrow K $\tau\tau$] ■ Br[$B_s \rightarrow \phi \tau \tau$] τ^+ τ, ν_{τ} 2 l,ν v_{τ} 0 1.3 1.4 1.2 1.5 1.1 R_X/R_X^{SM} LQ

LQ

PASCOS2025

Possible NP enhancement of $\mathcal{B}(b \to s\tau^+\tau^-)$

B. Capdevila et al., PRL120, 181802(2018)

as a function of R(X)

B Decay Analyses with Missing at B-factory

- Difficulty due to the neutrino(s) in the signal decay
- \rightarrow Utilize the B factory specific feature : <u>Tagging one of the $B\overline{B}$ pair in the event</u>

Reconstruct and remove $\mathsf{B}_{\mathsf{tag}}$ from the event \rightarrow Search for the signal decay in the remaining particles

B_{tag}: Full Event Interpretation (FEI) [Computing and Software for Big Science 3, 6 (2019)]

- Reconstruct > 100 intermediate decays $\rightarrow O(10,000)$ decay chains
- Multivariate classifier for signal probability
 - $\rightarrow O_{FEI} = 0 \sim 1$ for BG ~ Sig
 - Cut on O_{FEI} : Optimize eff. vs purity in each analysis 0 0
 - Additionally kinematical cuts are performed
 - *B_{tag}* invariant mass for hadronic decays
 - Missing ~ neutrino for semileptonic decays
- Hadronic and Semleptonic Tagging
 - Hadronic ~ 0.5 % eff. 0
 - Semileptonic ~ 1 % eff. (eff. depends on O_{FEI} cut) 0

Recent Belle, Bellell Results

• $\underline{B^0} \rightarrow \underline{D^{(*)}\tau\nu}$ R(D(*)) with Semileptonic Tag at Belle II arXiv:2504.11220, accepted by PRD

Analyzed data Belle : 711fb⁻¹ Bellell : 365fb⁻¹

- $\underline{B^0 \rightarrow K^{*0} \tau \tau}$ with Hadronic Tag at Belle II arXiv:2504.10042, submitted to PRL
- $\underline{B^0} \rightarrow \underline{K^0_S \tau \ell}$ and $\underline{B^0} \rightarrow \underline{K^{*0} \tau \ell}$ with Hadronic Tag at Belle + Belle II arXiv:2412.16470 ($K^0_S \tau \ell$), accepted by PRL arXiv:2505.08418 ($K^{*0} \tau \ell$), accepted by JHEP
- $\underline{B^0} \rightarrow X_s \nu \overline{\nu}$ with **Hadronic Tag** at **Belle II**
- <u>Reinterpretation</u> of the $\underline{B^+} \rightarrow K^+ \nu \overline{\nu}$ Belle II Result

arXiv:2507.12393, submitted to PRD

$B^0 \rightarrow D^{(*)}\tau\nu$ with Semileptonic Tag at Belle II [arXiv:2504.11220] accepted by PRD

- First R(D^(*)) BelleII measurement using semileptonic B tagging
- 365fb⁻¹ Belle II data
- Semileptonic FEI Tag, neutral B_{tag}
 Charged B_{tag} is left for future study (require precise slow π⁰ understanding)
- Leptonic tau decays: $\tau \rightarrow e \bar{\nu}_e \nu_{\tau}$, $\mu \bar{\nu}_{\mu} \nu_{\tau}$
- Fit signal B→D(*)TV and normalization B→D(*)IV simultaneously
 → obtain R(D*) and R(D)

$^{0} \rightarrow D^{(*)} \tau \nu$ Signal Separation

N

BDT used to separate events

- Semitauonic signal events : $B \rightarrow D^{(*)} \tau v$
- Semileptonic events $B \to D^{(*)} \ell \nu$ and $B \to D^{**} \ell \nu$
- Background events: continuum and $B\overline{B}$ Ο
- Trained on 5 input variables •
 - 2 specific decay angle correlations to semileptonic decays
 - Extra energy in the calorimeter 0
 - Signal side D and lepton momentum 0
- Output for each event: Z_{τ} , Z_{ℓ} , Z_{bkg} •

→ Use Z_{τ} , $Z_{\text{diff}} \equiv Z_{\ell} - Z_{\text{bkg}}$ for the signal extraction

$B^0 \rightarrow D^{(*)}\tau\nu$ Signal Extraction Fit

- Fit is performed over 4 channels :*De*, *D*^{*}*e*, *Dμ*, *D*^{*}*μ*
- 2D binned likelihood fits to Z_{τ} and $Z_{\text{diff}} \rightarrow$ projected to 1D
 - X=0,1 \rightarrow large normalization events \rightarrow left axis
 - Larger X \rightarrow semitauonic signals \rightarrow right axis
- 10 fit parameters : 2 signal, 2 normalization, 6 background

175

150

125

100

75

50

 $B^0 \rightarrow D^{(*)} \tau \nu R(D^{(*)})$ Results

First Belle II R(D^(*)) Results with semileptonic tag

 $R(D^*)$ 68% CL contours HFLAV $\mathcal{R}(D^+) = 0.418 \pm 0.074(\text{stat}) \pm 0.051(\text{syst})$ Belle^a BaBar Spring 2025 $\mathcal{R}(D^{*+}) = 0.306 \pm 0.034(\text{stat}) \pm 0.018(\text{syst})$ 0.35 LHCb^c Belle II^a Belle 0.3 The tension between the $R(D^{(*)})$ measurements Average and the SM increases from 3.3σ to 3.8σ . LHCb LHCb^a 0.25 **Belle** Also measured semi-electric to semi-muonic ratio $\begin{array}{l} R(D) = 0.347 \pm 0.025_{total} \\ R(D^*) = 0.288 \pm 0.012_{tot} \end{array}$ 0.2 HFLAV SM Prediction $\mathcal{R}(D_{e/\mu}^+) = 1.07 \pm 0.05(\text{stat}) \pm 0.02(\text{syst})$ $R(D) = 0.296 \pm 0.004$ $\rho = -0.39$ $R(D^*) = 0.254 \pm 0.005$

0.2

0.3

 $\mathcal{R}(D_{e/\mu}^{*+}) = 1.08 \pm 0.04(\text{stat}) \pm 0.02(\text{syst})$

consistent with 1 in 1.2 and 1.6 σ

R(D)

0.5

 $\dot{P}(\gamma^2) = 41\%$

0.4

$B^0 \rightarrow K^{*0} \tau \tau$ with Hadronic Tag at Belle II [arXiv:2504.10042], submitted to PRL

- b→s penguin and box diagrams
- SM Prediction $(0.98 \pm 0.10) \times 10^{-7}$

[J. L. Hewett, Phys. Rev. D 53, 4964 (1996), B. Capdevila et al., Phys. Rev. Lett. 120, 181802 (2018)]

- 365fb⁻¹ Belle II data
- Hadronic FEI Tag
- One prong tau decays: $\tau \to e \bar{\nu}_e \nu_{\tau}$, $\mu \bar{\nu}_{\mu} \nu_{\tau}$, $\pi \nu_{\tau}$, $\rho \nu_{\tau} (\rho \to \pi \pi^0)$
- $K^{*0} \rightarrow K^+ \pi^-$
- Previous result: Belle 711fb⁻¹ $\mathcal{B}(B^0 \to K^{*0}\tau\tau) < 3.1 \times 10^{-3} (90\% C.L.)$ [Phys. Rev. D 108, L011102 (2023)] PASCOS2025

$B^0 \to K^{*0} \tau \tau$ Result

- Fit BDT Output to extract signals
 - Event shape variables
 - q², kinematics of K* and τ candidates
 - Missing energy and momentum, extra energy in calorimeter
- Calibration by control samples such as off-resonance data, $B \rightarrow K^* J/\psi$ events
- Separate events in 4 categories depending $\tau\tau$ daughters

 $B^0 \rightarrow K_S^0 \tau \ell \text{ and } B^0 \rightarrow K^{*0} \tau \ell$ with Hadronic Tag at Belle + Belle II [arXiv:2412.16470 (K⁰ $\tau \ell$)], accepted by PRL [arXiv:2505.08418 (K^{*0} $\tau \ell$)], accepted by JHEP

- b→s lepton flavor violation
- Combine Belle and BelleII Data
 - o 711fb⁻¹ Belle
 - o 365fb⁻¹ Belle II
- Hadronic FEI Tag
- Tau candidate: require one charged track
 - For K⁰_Sτℓ, e, μ, π, ρ(→ππ⁰) for one prong τ decays
 For K^{*0}τℓ, no explicit particle ID required
- $K^0_S \rightarrow \pi^+\pi^-$, $K^{*0} \rightarrow K^+\pi^-$

- Previously published results:
 - BaBar $B^+ \to K^+ \tau \ell$ upper limits at [1.5, 4.5] x 10⁻⁵ [PRD 86, 012004 (2012)]
 - O Belle B⁺ → K⁺τℓ most stringent upper limit for B⁺ → K⁺τ⁺μ⁻ at 6 × 10⁻⁶ [PRL130, 261802 (2023)]
 - LHCb $B^+ \to K^{*0} \tau \mu$ upper limits at [0.8,1.0] x 10⁻⁵ [JHEP 06 2023 143]

(LHCb reported (preliminary) world best upper limit of $B^0 \to K^{*0}\tau e$ at Moriond 2025 [arXiv:2506.15347])

$B^{0} \rightarrow K^{0}_{S} \tau \ell \operatorname{Fit} \operatorname{Results}_{B^{0} \rightarrow K^{0}_{S} \tau^{1} \mu^{1}}$

- Signal is extracted by fit to the recoiling T mass $M_{\tau}^2 = (E_{e^+e^-} p_{\ell} p_{K_S^0} p_{B_{tag}})^2$
- Calibration by recoiling D mass in $B \rightarrow DD_S$ control sample

No significant signal \rightarrow set upper limits (90% C.L.)

$B^0 \to K^{*0} \tau \ell$ Fit Results

Simultaneous fit of Belle and Belle II data

Search for $B^0 \rightarrow X_s \nu \bar{\nu}$ with Hadronic Tag at Belle II

- Inclusive b→s decays → Sensitive to the different NP parameters
 [T. Felkl et al., JHEP 12, 118 (2021)]
- SM Prediction (2.9±0.3) x 10⁻⁵ [<u>A. J. Buras et al., JHEP 02, 184 (2015)</u>]
- Previous result: ALEPH, $\mathcal{B}(b \rightarrow sv\bar{v}) < 6.4 \times 10^{-4} (90\% C.L.)$ [Eur. Phys. J. C 19, 213 (2001)]
- 365fb⁻¹ Belle II data
- Hadronic FEI Tag

$B^0 \rightarrow X_s \ \nu \overline{\nu} \text{ Results}$

contribution to Belle II $B^+ \rightarrow K^+ \nu \bar{\nu}$

- X_s reconstructed in 30 decay modes: K, Kπ, K2π, K3π, K4π, 3K, 3Kπ covers 93% of the inclusive modes
- Requires no remaining particles
- Background suppression by BDT
- Fit the BDT output in 3 M_{X_S} regions

no significant signal \rightarrow set upper limits (90% C.L.)

$$\begin{split} \mathcal{B}(B^0 \to X_S \nu \bar{\nu}) < \begin{cases} 2.5 \times 10^{-5} \ (0.0 < M_{X_S} < 0.6 \ \text{GeV}/c^2) \\ 1.0 \times 10^{-4} \ (0.6 < M_{X_S} < 1.0 \ \text{GeV}/c^2) \\ 3.5 \times 10^{-4} \ (1.0 \ \text{GeV}/c^2 < M_{X_S}) \end{cases} \\ \end{split}$$
For entire M_{X_S} region
$$\mathcal{B}(B^0 \to X_S \nu \bar{\nu}) < 3.6 \times 10^{-4} \end{split}$$

18

Reinterpretation of $B^+ \rightarrow K^+ \nu \overline{\nu}$ [arXiv:2507.12393], submitted to PRD

Belle II Inclusive + Hadronic Tag Analysis Result $\mathcal{B}(B^+ \to K^+ \nu \bar{\nu}) = [2.3 \pm 0.5(\text{stat})^{+0.5}_{-0.4}(\text{syst})] \times 10^{-5}$

3.5σ above the bkg-only hypothesis2.7σ above the SM prediction

SM shape is assumed \rightarrow How to interpret it in the new physics models? **Reinterpretation with model-agnostic likelihoods**

based on [L. Gärtner et al., Eur. Phys. J. C 84, 693 (2024)]

• Number density for SM: $n_0(x) = L \int \varepsilon(x|q^2) \sigma_0(q^2) dq^2 \rightarrow \sum_{q^2 bins} n_{0,q^2}(x)$,

$$L =$$
luminosity

• Number density for alternative model: $n_1(x) = \sum_{q^2 bins} n_{0,q^2}(x) w(q^2)$, $w(q^2) = \sigma_1(q^2) / \sigma_0(q^2)$

Application to $B^+ \to K^+ \nu \bar{\nu}$

Number density for the alternative model:

- $n_1(x) = \sum_{q^2 bins} n_{0,q^2}(x) w(q^2)$ $w(q^2) = \sigma_1(q^2) / \sigma_0(q^2)$
- $n_{0,q^2}(x)$: calculated for the SM a map for $q^2 \rightarrow$ histogram bins of reconstructed q^2 and $\eta(BDT_2)$
- Weight $w(q^2)$ calculated for the NP model Differential cross section calculated with Weak Effective Theory (WET) including vector, scalar and tensor contributions (SM: C_{VL} only)

$$\frac{d\mathcal{B}}{dq^2} = \alpha(q^2) |C_{VL} + C_{VR}|^2 + \beta(q^2) |C_{SL} + C_{SR}|^2 + \gamma(q^2) |C_{TL}|^2$$

$$+ \gamma(q^2) |C_{TL}|^2$$
PASCOS2025

NP Interpretation of $B^+ \rightarrow K^+ \nu \bar{\nu}$

- Fit with the reweighted number density Three parameters of interest (taken as real) : $C_{VL} + C_{VR}$, $C_{SL} + C_{SR}$, C_{TL}
- 3.3 σ significance v.s. bkg only

PASCOS20 The necessary information for reinterpretation with any NP model will also be published on HEPData.

Summary

- Anomaly in R(D^{*}) and R(D) and large $B \to K \nu \bar{\nu}$ signal
- → Correlated NP may be in $B \to D^{(*)}\tau\nu$ and $b \to s$ penguin decays

New results from Belle+BelleII with analyses with the improved sensitivity are reported.

- Tension in $R(D^{(*)})$ increased to 3.8 σ by adding the Bellell semileptonic tag results
- Searches for $b \rightarrow s$ penguin decays with τ and ν
 - Best upper limit of $B^0 \to K^* \tau \tau$
 - First search of $B^0 \to K_S^0 \tau \ell$
 - First search at B-factories of $B^0 \to K^{*0} \tau \ell$
 - Best upper limit of $B^0 \to X_S \nu \bar{\nu}$
- Reinterpretation of $B^+ \to K^+ \nu \bar{\nu}$ with New Physics by WET calculation is performed
 - Vector + Tensor solution is preferred.
 - The tools for further reinterpretation with other any NP possibilities will be provided.

More results will come with increasing Belle II data

$B^{0} → D^{(*)} τν R(D^{(*)})$ Syst. Errors

- Multiplicatives are small
 → cancel by taking Ratio
- MC sample size is the largest source
- $B \rightarrow D^{**} \ell \nu$ understanding (written as "Gap B") and the semileptonic/tauonic form factors are the next largest

TABLE I. Systematic uncertainties on $\mathcal{R}(D^+)$ and $\mathcal{R}(D^{*+})$ ranked by the magnitude of the uncertainty on $\mathcal{R}(D^+)$. The percentage values in brackets indicate the relative uncertainty.

Systematic Uncertainty	$\Delta \mathcal{R}(D^+)$	$\Delta \mathcal{R}(D^{*+})$
Additive		
MC sample size	0.033~(8.0%)	0.014(4.7%)
$\operatorname{Gap} \mathcal{B}$	0.027~(6.4%)	0.001~(0.1%)
LID efficiency (μ)	0.022 (5.1%)	0.001~(0.1%)
Fake rates (e)	0.012~(2.9%)	0.003~(0.9%)
$\pi^{\pm} \text{ from } D^* \to D\pi$	0.003~(0.7%)	0.001~(0.1%)
Continuum fraction	0.002~(0.6%)	0.001~(0.2%)
$\overline{B} \to D^{(*)} \ell \bar{\nu}_{\ell} / \tau \bar{\nu}_{\tau}$ FFs	0.002~(0.5%)	0.002~(0.7%)
Gap FFs	0.002~(0.5%)	0.001~(0.2%)
$\mathcal{B}(\overline{B} \to D^{**} \ell \bar{\nu}_{\ell})$	0.002~(0.5%)	0.001~(0.1%)
$\overline{B} \to D^{**} \ell \bar{\nu}_{\ell}$ FFs	0.001~(0.3%)	0.001~(0.2%)
BDT modeling	0.001~(0.3%)	0.001~(0.2%)
LID efficiency (e)	0.001~(0.1%)	0.001~(0.2%)
Fake rates (μ)	0.001~(0.1%)	0.001~(0.1%)
Total Additive Uncertainty	0.050~(12%)	0.015~(4.8%)
Multiplicative		
$\overline{B} \to D^{(*)} \ell \bar{\nu}_{\ell} / \tau \bar{\nu}_{\tau}$ FFs	0.009~(2.1%)	0.011~(3.5%)
MC sample size	0.007~(1.7%)	0.004~(1.2%)
LID efficiency (e)	0.001~(0.2%)	0.001~(0.2%)
$\mathcal{B}(\tau^- \to \ell^- \overline{\nu}_\ell \nu_\tau)$	0.001~(0.2%)	0.001~(0.2%)
LID efficiency (μ)	0.001~(0.1%)	0.001~(0.1%)
Tracking efficiency	0.001~(0.1%)	0.001~(0.1%)
π^{\pm} from $D^* \to D\pi$	- (-)	0.001~(0.2%)
Total Multiplicative Uncertainty	0.012~(2.8%)	0.011(3.7%)
Total Syst. Uncertainty	0.051~(12%)	0.018 (6.2%)
Total Stat. Uncertainty	0.074~(18%)	0.034 (11%)
Total Uncertainty	0.090~(22%)	0.039~(13%)

$B^0 \rightarrow K^{*0} \tau \tau$ Efficiency and Syst. Errors

Systematic errors

Signal efficiencies and expected background yields

Signal category	$\varepsilon \times 10^5$	$B\overline{B}$	$q\overline{q}$
$\ell\ell$	4.0	275	39
$\pi\ell$	7.6	1058	230
ho	15.5	3279	845
$\pi\pi$	4.0	1077	424

Source	Impact on $\mathcal{B} \times 10^{-3}$
$B \to D^{**} \ell / \tau \nu$ branching fractions	0.29
Simulated sample size	0.27
$q \bar{q}$ normalization	0.18
ROE cluster multiplicity	0.17
π and K ID	0.14
B decay branching fraction	0.11
Combinatorial $B\overline{B}$ normalization	0.09
Signal and peaking $B^0 \overline{B}{}^0$ normalization	0.07
Lepton ID	0.04
π^0 efficiency	0.03
f_{00}	0.01
$N_{\Upsilon(4S)}$	0.01
$D \to K_L^0$ decays	0.01
Signal form factors	0.01
Luminosity	< 0.01
Total systematics	0.52
Statistics	0.86

$B^0 \to K^0_S \tau \ell$ Efficiency and Syst. Errors

TABLE I. Efficiencies (ϵ), signal yields (N_{sig}) of the data fit, central value of the branching fractions and the observed \mathcal{B}^{UL} at 90% CL. The first uncertainty of the central value is statistical and the second is systematic.

			$\mathcal{B}(10^{-5})$	
Channels	$\epsilon(10^{-4})$	$N_{ m sig}$	Central value	UL
$B^0 \to K^0_S \tau^+ \mu^-$	1.7	-1.8 ± 3.0	$-1.0 \pm 1.6 \pm 0.2$	1.1
$B^0 \to K^0_S \tau^- \mu^+$	2.1	2.6 ± 3.5	$1.1\pm1.6\pm0.3$	3.6
$B^0 \to K^0_S \tau^+ e^-$	2.0	-1.2 ± 2.4	$-0.5\pm1.1\pm0.1$	1.5
$B^0 \to K^0_S \tau^- e^+$	2.1	-2.9 ± 2.0	$-1.2 \pm 0.9 \pm 0.3$	0.8

Systematic errors

- BDT selections 16-18 % $B \rightarrow D_S D^-$ sample Signal PDF 15% *
- B_{tag} efficiency 4%
- Fitting procedure 0.8-1.6%
- $K_{\rm s}$ reconstruction 1.1%
- PID 0.3-1.0% •
- π^0 reconstruction 1.3%
- Requirement of no additional π^0 1.0 % •
- $N_{B\bar{B}}$ 1.1%
- f_{+-/00} 1.5%
- $B \text{ of } K_{S}, \tau, \rho, \pi^{0} 0.7\%$

$B^0 \to K^{*0} \tau \ell$ Efficiency and Syst. Errors

B flavor and ℓ charge relations Systematic errors $OS\ell: B^0 \to K^{*0}\tau^+\ell^-$ Source Belle Belle II $SS\ell: B^0 \to K^{*0}\tau^-\ell^+$ $SS\mu$ $SSe OS\mu$ OSe $SSe OS\mu$ OSe $SS\mu$ FEI efficiency [%] 6.24.94.94.94.96.26.16.1Lepton ID efficiency [%] 2.02.42.22.20.71.1 0.70.6Hadron ID efficiency [%] 3.71.92.01.93.73.72.03.6 BDT efficiency [%] 272118 232931 3431Tracking efficiency [%]1.41.1 Total efficiency [%] 27.621.818.923.729.831.834.731.7Signal efficiencies Signal PDF μ [%] 0.10.2OSeSSe $OS\mu$ $SS\mu$ Signal PDF λ [%] 2159 $N_{\Upsilon(4S)}$ [%] 1.41.6Belle 0.0460.0380.0520.024 f^{00} [%] 0.8Belle II 0.0750.0560.0600.051Background PDF ($\times 10^{-5}$) 0.110.280.090.020.110.280.090.02Total impact on UL ($\times 10^{-5}$) 0.30.90.40.50.30.90.40.5

$B^0 \rightarrow X_s \nu \bar{\nu}$ Efficiency and Syst. Errors

Explicit 30 Decay modes

		$B^0 ar{B}^0$			B^{\pm}	
K	K_S^0			K^{\pm}		
$K\pi$	$K^{\pm}\pi^{\mp}$	$K^0_S \pi^0$		$K^{\pm}\pi^0$	$K^0_S \pi^\pm$	
$K2\pi$	$K^{\pm}\pi^{\mp}\pi^{0}$	$K^0_S \pi^{\pm} \pi^{\mp}$	$K^0_S\pi^0\pi^0$	$K^{\pm}\pi^{\mp}\pi^{\pm}$	$K^0_S \pi^\pm \pi^0$	$K^{\pm}\pi^{0}\pi^{0}$
$K3\pi$	$K^{\pm}\pi^{\mp}\pi^{\pm}\pi^{\mp}$	$K^0_S \pi^\pm \pi^\mp \pi^0$	$K^{\pm}\pi^{\mp}\pi^{0}\pi^{0}$	$K^{\pm}\pi^{\mp}\pi^{\pm}\pi^{0}$	$K^0_S \pi^\pm \pi^\mp \pi^\pm$	$K^0_S\pi^\pm\pi^0\pi^0$
$K4\pi$	$K^{\pm}\pi^{\mp}\pi^{\pm}\pi^{\mp}\pi$	${}^{0}K^{0}_{S}\pi^{\pm}\pi^{\mp}\pi^{\pm}\pi^{\pm}\pi$	${}^{\mp}K^0_S\pi^{\pm}\pi^{\mp}\pi^0\pi^0$	$K^{\pm}\pi^{\mp}\pi^{\pm}\pi^{\mp}\pi^{\mp}\pi$	$\pm K^0_S \pi^{\pm} \pi^{\mp} \pi^{\pm} \pi^{\pm}$	${}^{0}K^{\pm}\pi^{\mp}\pi^{\pm}\pi^{0}\pi^{0}$
3K	$K^{\pm}K^{\mp}K^0_S$			$K^{\pm}K^{\mp}K^{\pm}$		
$3K\pi$	$K^{\pm}K^{\mp}K^{\pm}\pi^{\mp}$	$K^\pm K^\mp K^0_S \pi^0$		$K^{\pm}K^{\mp}K^{\pm}\pi^{0}$	$K^0_S K^{\pm} K^{\mp} \pi^{\pm}$	

Branching fractions and efficiencies

			$\mathcal{B}~[10^{-5}]$		
$M_{X_s} \left[\text{GeV}/c^2 \right]$	ϵ	$N_{ m sig}$	Central value	$\mathrm{UL}_{\mathrm{obs}}$	$\mathrm{UL}_{\mathrm{exp}}$
$\overline{[0, 0.6]}$	0.25%	$10^{+18}_{-17}{}^{+18}_{-16}$	$0.5\substack{+0.9 + 0.9 \\ -0.8 - 0.8}$	2.5	2.4
[0.6, 1.0]	0.11%	$36^{+27}_{-25}{}^{+31}_{-26}$	$3.8^{+2.8}_{-2.6}{}^{+3.2}_{-2.7}$	10.0	7.2
$[1.0, M_{X_s}^{\max})$	0.06%	$33^{+44}_{-42}{}^{+64}_{-53}$	$7.2^{+9.6+13.9}_{-9.2-11.6}$	35.3	28.3
Full range	0.11%	$80^{+61}_{-59}{}^{+93}_{-79}$	$11.5^{+8.9}_{-8.5}{}^{+13.5}_{-11.4}$	35.6	27.9

Systematic errors

Source	Uncertainty $[10^{-5}]$
MC statistics	$+7.0 \\ -5.9$
Background normalization	$\substack{+6.2\\-6.1}$
Branching ratio of major B meson decay	$\substack{+2.9\\-2.1}$
Fragmentation	$^{+2.7}_{-1.8}$
Photon multiplicity correction	$^{+2.5}_{-1.8}$
\mathcal{O} selection efficiency	$^{+3.3}_{-0.9}$
Non-resonant $X_s \nu \bar{\nu}$ generation point	$^{+3.3}_{-0.7}$
Other subdominant contributions	$^{+3.7}_{-2.7}$
Total systematic uncertainty	$^{+13.5}_{-11.4}$