Symmetry constraints on defect RG flows

Christian Copetti (Oxford)

PASCOS 2025 Durham

Why Defects?

Defects and their RG flows are ubiquitous in Physics:

- $\label{eq:HEP-TH} \begin{array}{l} \circ & \mbox{Wilson lines and 't Hooft operators in gauge theories[Polchinski,Sully '11]} \\ & \mbox{[Aharony,Cuomo,Komargodski,Mezei,Raviv-Moshe'23]} \end{array} .$
 - $\circ\,$ Pinning field defects in O(N) CFT[Cuomo,Komargodski,Mezei '21 + Raviv-Moshe '22] [Raviv-Moshe, Zhong '23] [Giombi,Liu '23] .
 - $\circ~$ Domain walls in SSB scenarios.
 - Monodromy defects for free theories[Bianchi,Chalabi,Prochazka,Robinson,Sisti
 '21] [Giombi,Helfenberger,Ji,Khanchandani '21] [Herzog,Shresta '22] .
- $\label{eq:cond-matrix} {\rm COND-MAT} ~\circ~ {\rm Lattice~impurities~(Kondo~problem)[Anderson'70,Wilson'75,Affleck,Ludwig'90...]}$
 - $\,\circ\,$ Disclocations and Disclination [Barkeshli,Fechisin,Komargodski,Zhong '25] .
 - $\circ~$ Pinning defects in ferromagnets [Assaad,Herbut '13] [Parisen,Assaad,Wessell '16] .
 - GEN-SYM Topological defects describe Generalized Symmetries [Gaiotto,Kapustin,Seiberg,Willet'14] ...

The List goes on...

Window into strongly coupled dynamics (e.g. confinement).

Bulk-defect systems are inherently strongly coupled \rightarrow few analytic results.

How defects are defined

[Electric]:
$$S_{\text{bulk}} = \int d^d \mathbf{x} \, \mathscr{L}_{\text{bulk}}(\Phi) \qquad \int d^p x \left(\, \mathscr{L}(\varphi) + F(\Phi, \varphi) \right)$$

Ex. Wilson lines $\mathscr{D} = P \exp(i \int A)$, O(N) defect $\mathscr{D} = \exp(n_i \int \phi^i)$...

Ex. Kondo problem.

Defect RG flows

We will focus on the IR fate \mathscr{D}_{IR} of a UV defect/impurity.

The following are common scenarios:

Screening Bulk and defect decouple completely $\mathscr{D}_{IR} = \mathbb{1}_p$.

Conformal \mathscr{D}_{IR} preserves $SO(2, p) \times SO(d - p)$ conformal group with a single vacuum. [Billó,Gonçalves,Lauria,Meineri '16]

Topological \mathscr{D}_{IR} is a nontrivial topological defect in the theory.

This Talk: If the bulk has a symmetry C, does it constrain \mathscr{D}_{IR} ?

 \triangle Common setup: bulk CFT fixed \rightarrow **Defect RG flow**. Our results hold regardless of this assumption, provided we assume that C acts **faithfully** along the RG.

Related comments in [CC '24] [Choi,Rayhaun,Zheng '24]

Symmetry & Defects I: Symmetric defects

Consider a bulk system with symmetry G. For concreteness G = U(1).

In the presence of a defect \mathscr{D} the Ward identities for the *G* current are modified: [Padayasi,Krishnan,Metlitski,Gruzberg,Meineri '21] [Drukker,Kong,Sakkas '22] [Herzog,Schaub '23] [CC,DiPietro,Ji,Komatsu '23] [Cuomo,Zhang '23] :

 $\partial_{\mu} J^{\mu}(\mathbf{x}) = t(x) \,\delta(\Sigma_{\mathscr{D}}) \,,$

a nontrivial **tilt operator** t(x) signals symmetry breaking by the defect.

In order for \mathscr{D} to preserve the symmetry we will need the tilt to trivialize:

 $t(x) = \partial_a j^a(x)$, for some defect current j^a .

In this case we'll say that \mathscr{D} is symmetric wrt G.

A symmetric defects allows for an improvement of the symmetry generator $U_{\alpha}(Y) = \exp\left(i\alpha \int_{Y} \star J\right)$:

$$U_{\alpha}(Y) \longrightarrow U_{\alpha}(Y) \exp\left(-i\alpha \int_{Y \cap \Sigma_p} \star j\right)$$

Such that $U_{\alpha}(Y)$ remains topological in the presence of \mathscr{D} . In other words:

 $U_{\alpha} \mathscr{D} = \mathscr{D} U_{\alpha}$

We can then carry out many of the familiar hep-th procedures, such as turning on gauge fields for the defect symmetry G.

A defect \mathscr{D} being **symmetric** does not itself give strong constraints on defect RG.

This follows from the fact that the identity $\mathbb{1}_p$ itself is a symmetric defect:

 $\mathbb{1}_p \ U = U \ \mathbb{1}_p.$

To derive constraints we will need to specify more details about the symmetry representation on \mathscr{D} . The set of representations can be derived from the correct generalization of the Strip Algebra [Kong,Kitaev '11] [C. Cordova,Garcia-Sepulveda,Holfester,Ohmori'24] [CC,L. Cordova,Komatsu '24] [Gagliano,Grigoletto,Ohmori'25]. Connects to the idea of generalized charges/ higher tube algebras [Bhardwaj,Schafer-Nameki '23] [Bartsch,Bullimore,Grigoletto'23].

These representations have very interesting features, such as non-trivial **defect anomalies**: 't Hooft anomalies localized on the defect's worldvolume.

We will now focus on a specific (but interesting) example.

Symmetry & Defects II: Symmetry-Reflecting defects

A natural generalization of this concept is what we call symmetry reflecting defects:¹

$$U \mathscr{D} = \mathscr{D} U = \langle U \rangle \mathscr{D}.$$

The symmetry defects are **absorbed** by \mathscr{D} . For concreteness we focus on p = d - 1. In terms of the current J it means that, on the defect's worldvolume:

$$J_{\perp}(x) = \partial_a \, \eta^a(x) \,.$$

Alternatively, the topological operator U can terminate **topologically** on \mathscr{D} .

¹A similar concept for boundary conditions appeared in [Choi,Rayhaun,Sanghavi,Shao '23]

A symmetry reflecting interface preserves the G symmetry **independently** on the two sides. The total symmetry in this case is **at least** $G_L \times G_R$.

All of the symmetry charge scattering on \mathcal{D} is thus reflected back. \mathcal{D} acts as an **hard wall** for charged objects.

Similar ideas can be formulated using the Defect OPE of charged bulk fields.

Consequences

A symmetry reflecting defect cannot be screened in the IR.

The IR fixed point can either be:

- A nontrivial symmetry reflecting conformal defect.
- A nontrivial (and non-invertible) topological defect.
- A theory of Defect Goldstone modes.

Construction I: Coupling via an 't Hooft anomaly

Let G = U(1). We define a $p = 2 \mathscr{D}_{UV}$ by electrically coupling U(1) symmetric matter, whose U(1) symmetry has an 't Hooft anomaly:

$$\partial_a \eta^a = rac{1}{2\pi} F \, .$$

Setting $F = 2\pi J_{\perp}$ defines a UV symmetry reflecting defect.

Example: compact scalar $\theta \sim \theta + 2\pi$ on the defect, axion coupling:

$$S_{\rm int.} = i \int d^2 x \, \theta J_{\perp} \, .$$

This allows to construct interesting un-screenable defects in (2+1)d and (3+1)d gauge theories (with matter) with a $U(1)_T$ symmetry:

$$\star J = \frac{1}{2\pi} da$$

Construction II: Deforming Topological defects

A wide class of conformal defects are obtained by the "pinning field" construction:

$$\mathscr{D} = \left\| \begin{array}{c} & \\ & \\ \\ & \\ \\ & \\ \end{array} \right\|_{p} + \lambda \int d^{p} x \ \sigma_{\text{pin}} \,, \quad \Delta(\sigma_{\text{pin}})$$

These defects are symmetric if $U\begin{pmatrix} \sigma_{\text{pin}} \\ \bullet \end{pmatrix} \stackrel{\sigma_{\text{pin}}}{=} \bullet$.

A symmetry reflecting defect can be constructed in a similar manner by deforming a topological defect \mathcal{N} (related ideas [Kormos,Runkel,Watts '09] [Makabe, Watts '17]):

$$\mathscr{D} = \left[\begin{array}{c} \mathcal{L} \mathscr{N} = \mathscr{N} \mathcal{L} = d_{\mathcal{L}} \mathscr{N} \\ + \lambda \int d^{p} x \, \mu_{\text{pin}}, & \mathcal{L} \stackrel{\mu_{\text{pin}}}{\longleftarrow} \stackrel{\mu_{\text{pin}}}{=} \right] \cdot \quad \forall \, \mathcal{L} \in \mathcal{C} \, .$$

Interestingly, μ_{pin} can be a **nonlocal (twisted)** operator living at the end of an \mathcal{L} line.

Example:

(1+1)d Ising CFT,
$$G = \mathbb{Z}_2$$
: $\mathscr{D} = \left| \begin{array}{c} +\lambda \int dx \, \mu_{\frac{1}{16}, \frac{1}{16}} \\ 1 + \eta \end{array} \right|$

The flow can be "bootstrapped" exactly:

$$\underset{\mathrm{KW\,duality}}{\mathcal{N}} \times \mathscr{D} = \left(\begin{array}{ccc} & & \\ & &$$

The term in () brackets flows to $|+\rangle\langle+|\oplus|-\rangle\langle-|$ where $\{|+\rangle, |-\rangle, |f\rangle\}$ are the Cardy states for Ising. Using $\mathcal{N}|\pm\rangle = |f\rangle$, $\mathcal{N}|f\rangle = |+\rangle + |-\rangle$, we conclude that:

$$\mathscr{D}_{IR} = |f\rangle \langle f|.$$

Symmetry and Defects III: Symmetry Breaking and Modulation

We now consider symmetry-breaking defects, in which case t(x) is nontrivial.

Breaking a continuous symmetry G defines a family of defect \mathscr{D}_{σ} by the deformation:

$$i \int_{\mathscr{D}} \operatorname{Tr} \sigma t(x), \quad g \in G = e^{i\sigma}.$$

For boundary conditions \mathscr{B} , if G suffers from an 't Hooft anomaly (e.g. the $SU(N_f)$ symmetry of N_f Weyl fermions),

$$Z[A + d_A \lambda] = e^{i \int \omega(A,\lambda)} Z[A],$$

then $\mathscr{B} = \mathscr{B}_{\sigma}$ must break the symmetry.

We call this breaking anomaly-enforced [CC '25], see also [Choi et al '25]

A natural question is whether an anomaly-enforced breaking fundamentally differs from a vanilla one.

To answer this we would like to couple the bulk + defect system to a gauge field A.

Naively this is not possible, as $A \to A + d_A \lambda$ gives rise to a boundary term

 $i \int_{\mathscr{B}} \operatorname{Tr} \lambda(x) t(x) \, .$

This can be circumvented provided we consider coupling the defect to a **modulated** coupling $\sigma(x)$.

The bulk + boundary system can be made gauge invariant by a non-linear transformation for σ :

$$A \to A + d\lambda$$
, $\sigma \to \sigma - \lambda$.

The defect free-energy now depends on $A,\,\sigma$ and the invariant combination $\omega_A=g^{-1}(d+A)g~$.

For anomalous symmetries in the presence of a boundary, the Wess-Zumino consistency condition is violated by a boundary term:

$$\delta_{\lambda_1}\omega(A,\lambda_2) - \delta_{\lambda_2}\omega(A,\lambda_1) - \omega(A,[\lambda_1,\lambda_2]) = d\beta(\lambda_1,\lambda_2,A).$$

The presence of a boundary term forces the symmetry breaking [Jensen, Yarom '19].

However, for modulated defects, β can be cancelled by the modulated free energy $F_{\mathscr{B}}$:

$$\beta(\lambda_1, \lambda_2, A) = \delta_{\lambda_1} F_{\mathscr{B}}(\lambda_2, A) - \delta_{\lambda_2} F_{\mathscr{B}}(\lambda_1, A) \,.$$

This fixes universal, anomaly-induced terms in $F_{\mathscr{B}}$.

Boundary Transport and SPT pumping

Consider G = U(1) the anomalies:

$$\omega_{(1+1)} = \frac{\chi_{(1+1)}}{2\pi} \int d\lambda A \,, \qquad \qquad \omega_{(3+1)} = \frac{\chi_{(3+1)}}{24\pi^2} \int d\lambda A \, dA \,,$$

Fix:

$$F_{\mathscr{B},(1+1)} = \frac{\chi_{(1+1)}}{2\pi} \int \sigma(A+d\sigma) + \dots, \quad F_{\mathscr{B},(3+1)} = \frac{\chi_{(3+1)}}{24\pi^2} \int \sigma(A+d\sigma) dA + \dots$$

Give rise to the following (Hall) boundary currents:

$$Q_{\mathscr{B}} = \chi_{(1+1)} \frac{\sigma}{2\pi} , \qquad \qquad \mathcal{J}^{i}_{\mathscr{B}} = \chi_{(3+1)} \frac{\sigma}{8\pi^2} \epsilon^{ijk} F_{jk} .$$

As we wind around the circle $\sigma \rightarrow \sigma + 2\pi$ charge is deposited on the boundary.

This is a Thouless-pump phenomenon and correspond to the stacking of U(1) SPTs

$$i\chi_{(1+1)}\int_{\mathscr{B}}A\,, \qquad \qquad irac{\chi}{4\pi}\int_{\mathscr{B}}AdA\,,$$

Which describe Integer Quantum Hall states in (0+1) and (2+1) dimensions.

This shows a deep interplay between bulk 't Hooft anomalies and the topology of families of defects related by anomaly-enforced symmetry breaking.

- How do symmetry-refined versions of defect entropy interplay with the possible representations of symmetry on \mathscr{D} ? ([Karch,Kusuki,Ooguri,Sun,Wang '23] for recent studies of defect entropy and [Choi, Rayhaun, Zheng '24] [Heymann,Quella '24] [Kusuki,Murciano,Ooguri,Pal '24] [Bastida,Das,Sierra,Molina-Vilaplana '24] symmetry resolved entropy)
- Does (generalized) symmetry allow to constrain/bootstrap defect fusion rules? [Bachas,Brunner '07] [Konechny '15] [Soderberg '21] [Diatlyk,Khanchandani,Popov,Wang '24] [Kravchuck,Radcliffe,Sinha '24].
- "Anomalies in the space of couplings" [Cordova,Freed,Lam,Seiberg '19] for defect RG flows? Relation with [Debray,Devalapurkar,Krulewski,Liu,Pacheco-Tallaj,Thorngren '23] ?
- Application to lattice impurities (generalized Kondo)? How is the representation of symmetry on the defect encoded in the lattice formulation?