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String theory and the real world

 String compactifications:
get 4d physics from 10d theory

* The compact topology and geometry
determines physics

* Many choices:
e 10d string theory (all dual)
 Compact geometry
e Vector bundles, branes, ...

- Large string theory landscape




String landscape

e But why construct a landscape of physics models?
 Surely, one good model is enough to describe our Universe?

* Needle in a haystack problem/Don’t know what we’ll get

* Constructions are hard —
build many OK models and hope to find some really good ones

e Statistics of models: what is typical in string theory?

e Landscape vs swampland: what cannot occur in string theory (or QG)?

compare w Miguel Montero’s talk




Motivation for ML in string theory

 Build string vacuum with {Standard Model, ACDM, quintessence, ...}
e Can ML pick good geometries? Find vacua?

e Computations/Numerics
* Can ML improve approximations? Speed up hard computations?

* Learn mathematical structures (of relevance for physics)
e “Pure” data sets exist (or can be created); can ML find new patterns?

* Swampland vs Landscape

e Can ML help classify UV-complete effective field theories?
Test conjectures in classes of models?

... progress on all of these topics, driven by many researchers
Reviews: Ruehle:20, Bao, He, Heyes, Hirst:22, Anderson, Gray, ML:23



This talk: ML progress in Calabi-Yau Landscape

1. ML of CY topology -- Learn mathematical structures
2. ML of CY geometry -- Computations/Numerics
3. ML searches in the CY landscape -- Build string vacuum



The Calabi-Yau landscape of string theory

 String compactifications: Topology and geometry determine physics

 Calabi-Yau manifolds are popular example spaces:
* Compact, complex, Kahler, with ¢c; = 0
* Admit Ricci-flat metric, but this is not known analytically
e Large data bases of examples (algebraic geometry)
* Topology computed in examples (algebraic geometry)




1. Machine learning Calabi-Yau topology

* CY-related topology computable with AG, but algorithms are often costly
However

* Elements in CY databases are encoded as integer matrix

* CY databases also list integer topological invariants



1. Machine learning Calabi-Yau topology

* CY-related topology computable, but AG algorithms are often costly
 Elements in CY databases are encoded as integer matrix (input)

e CY databases also list integer topological invariants (labels)

* Nice playground for standard ML techniques
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Update via gradient descent to minimize loss encoding accuracy of prediction



1. Machine learning Calabi-Yau topology

* Hodge numbers

He:17, Ruehle:17, He—Lukas:20, Erbin-

et.al.:20,22, Hirst-et.al.23,...

X[8,29] =

* Topology of CY vector bundles
Klaewer—Schlechter:18, Constantin—Lukas:18,

Brodie-et.al.:19,20, Bull-et.al.:18,19,

ML-Schneider:19, ...

> new analytical formulae for

line bundle sum topology

e Or CY orientifolds Gao-zou:21,
7D G, topology Aggarwal-et.al:23
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2. ML for CY geometry: Ricci flat metrics

* Let X be an n-dimensional compact, complex, Kahler manifold with
vanishing first Chern class (c; = 0).
Then in any Kahler class [J], X admits a unique Ricci flat metric g.y.

Calabi:54, Yau:78

* Physics care about gy but there is no analytical expression (for d>1).
* Solve R;;(g) =0 2"d order, non-linear PDE for g in 6D

 Equivalent to 2"d order PDE for function ¢.
Hard, but may solve numerically on examples



2. ML for CY geometry: Ricci flat metrics

Kahler form J.ysatisfies
* Joy =]+ 1009 same Kahler class; ¢ is a function
* Jov Aoy Aoy =k QAQ  Monge-Ampere equation (k constant)

Numerical method:

e Sample large set of random points on CY (at fixed moduli)

* Compute () and reference J at all points

* Solve MA eq. numerically for /-y (or ¢)

* Check approximation: does MA eq hold and is Ricci tensor 07?



Numerical CY metrics —a longstanding quest

* Donaldson algorithm * ML methods
Donaldson:05, Douglas-et.al:06, Ashmore—He—Ovrut:19,
Douglas-et.al:08, Braun-et.al:08, Douglas—Lakshminarasimhan—Qi:20,
Anderson-et.al:10, ... Anderson—Gerdes—Gray—Krippendorf-

Raghuram—Ruehle:20,
Jejjala—Mayorga—Pena:20,
Larfors-Lukas-Ruehle-Schneider:21, 22

* Functional minimization Ashmore—Calmon—He—Ovrut:21,22,

Headrick—Nassar:13, Berglund-etal:22,24 ,
Cui-Gray:20, Gerdes—Krippendorf:22,
Ashmore—Calmon—He—Ovrut:21, ... Constantin-etal:24,25,

Hendi-Larfors-Walden:24,
Butbaia-etal:24, Ek-etal:24 ...



2. ML for CY geometry: model setup & train

* Data: Sample of points

* No labels: Know () and ref. | but
Ricci flat metric unknown

* Encode constraints (e.g. MA
equation)as loss function

* Train: Stochastic gradient descent
ML libraries TensorFlow, JAX, PyTorch

* When trained: NN is J-y or ¢
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Quintic

CY in toric ambient

ML works on different CYs
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Larfors ,Lukas, Ruehle,Schneider:22

Anderson, Gray, Larfors:23

Ricci and sigma measure on test set
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Application: Heterotic Standard-Like Models

Building blocks
e Ricci-flat Calabi Yau manifold X

* VVector bundle V satisfying Hermitian Yang-Mills eq. much more to say; see
FAQO=0=F /\]CY /\]CY talk by Luca Nutricati

* Discrete symmetry group G (to break GUT to SM)

* Many examples! E.g. 35 000 SLMs found with IV =@ L;

Anderson et.al:11,12,13, ...
.... with RL/gen.alg. ML-Schneider:20, Constantin et.al: 21, Abel et al:21,23,...
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Application: Heterotic Standard-Like Models

Building blocks
* Ricci-flat Calabi Yau manifold X
* Vector bundle satisfying HYM eq.

* Discrete symmetry G ~ smooth quotient CY X /G
 allows to break GUT using Wilson lines
* symmetries: permutations, discrete phase rotations, shifts of input z;

* Can ML predict Ricci flat metric on quotient CY?
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ML G-invariant CY metrics

Hendi, Larfors, Walden:24

* Let X be smooth CY, G symmetry, goy = grs + 000
* ML model which approximates ¢(z) is G-invariant if

¢(g-2z) = $(2)
* With enough data, symmetries are learned

* Or, use G-invariant layers to make ML model invariant
* Invariant NNs are universal approximators for invariant functions Yarotsky:22,..
* Invariant ML models can be constructed in many ways

* Geometric Deep Learning: symmetry, performance & interpretability
Bronstein et al:17,21,.



Invariance through non-trainable layers

Hendi, Larfors, Walden:24

G-canonicalization:

* Invariant layers: project Qg‘\\\\\qg‘
data to fund. domain »!{%}\ RN
\2@0 «*Q
* Modular and stackable X §\‘
(w. compatibility condition) SN
* Easily included in ML o

models for CY metrics

wwwwwwwwwwwwww

Eg: symmetric Quintic with cymetric package
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3. Searching the string landscape

Two well-studied continents: Explored with

* Particle physics: heterotic SLMs * reinforcement learning (RL)

Larfors, Schneider:20,
Constantin, Harvey, Lukas: 21,
Abel et al:21, 23

e genetic algorithms

* generative models
* Cosmology: IIB strings on CY

Cole et.al:21, Krippendorf et.al: :21
Krippendorf, Liu 25, ML-Walden:in progress e NB: we want

* ... and many other examples e exact solutions

F-theory, intersecting branes, heterotic orbifolds,... :
 clever search strategies



RL Standard-like Models from CYs S

Schneider PhD thesis, 2022
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* Set-up: Heterotic SLMs

Novsme < * Agent solves SLM environment
* Large number of models
* New search strategies
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Generative models for IIB flux vacua

 |IB flux vacua:
basis for KKLT and LVS scenarios

* Progress on computational tools
CYtools, JAXvacua

* Want quantized fluxes solving
* |ISD conditions (F-term vanishing)
* Tadpole constraint Ny,

- Sample w generative models

ML-Walden:in progress

* E.g. using Transformer + Int2Int
Vaswani et al:17, Charton:25
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* See also related work using VAE
Krippendorf, Liu:25
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Conclusions

ML methods help string phenomenology:

* Bypass hard computations & detect new patterns --- CY topology

* Improve numerical approximations --- CY metrics

 Search for good vacua in (known) landscapes --- SLMs and flux vacua

* OS ML packages & trained models:
cymetric, gymCICY, MLgeometry, cyjax, cymyc, AICY, ...



Conclusions and outlook

ML methods help string phenomenology:

* Bypass hard computations & detect new patterns --- CY topology

* Improve numerical approximations --- CY metrics

 Search for good vacua in (known) landscapes --- particle physics/cosmology

* Applications and generalizations
* Compute quark masses Butbaia-et.al:24, Constantin-et.al:24,25

* Test Swampland distance conjecture
Ashmore:20, Ashmore & Ruehle:21 Ahmed & Ruehle:23

e Geometry beyond CY: e.g. G-structures, G2 holonomy manifolds
Anderson et al:20, Douglas-Platt-Qi:24

* Refined searches in string landscape (lots of methods not yet tested)
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