
Machine Learning for 
String Compactifications

PASCOS’25, Durham, 24 July 2025
Magdalena Larfors, Uppsala University

Based on collaborations with 
A. Lukas, F. Ruehle, R. Schneider; L. Anderson, J. Gray; Y. Hendi, M. Walden 



String theory and the real world

• String compactifications: 
get 4d physics from 10d theory
• The compact topology and geometry 

determines physics
• Many choices: 
• 10d string theory (all dual)
• Compact geometry
• Vector bundles, branes, ...

à Large string theory landscape 
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String landscape

• But why construct a landscape of physics models?
• Surely, one good model is enough to describe our Universe?

• Needle in a haystack problem/Don’t know what we’ll get
• Constructions are hard – 

build many OK models and hope to find some really good ones
• Statistics of models: what is typical in string theory?  
• Landscape vs swampland: what cannot occur in string theory (or QG)?

compare w Miguel Montero’s talk



Motivation for ML in string theory

• Build string vacuum with {Standard Model, ΛCDM, quintessence, ...}
• Can ML pick good geometries? Find vacua?

• Computations/Numerics 
• Can ML improve approximations? Speed up hard computations? 

• Learn mathematical structures (of relevance for physics) 
• “Pure” data sets exist (or can be created); can ML find new patterns?

• Swampland vs Landscape
• Can ML help classify UV-complete effective field theories? 

Test conjectures in classes of models?
  … progress on all of these topics, driven by many researchers 

   Reviews: Ruehle:20,  Bao, He, Heyes, Hirst:22,   Anderson, Gray, ML:23



This talk: ML progress in Calabi-Yau Landscape

1. ML of CY topology  -- Learn mathematical structures

2. ML of CY geometry  -- Computations/Numerics 

3. ML searches in the CY landscape -- Build string vacuum 
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The Calabi-Yau landscape of string theory

• String compactifications: Topology and geometry determine physics

• Calabi-Yau manifolds are popular example spaces:
• Compact, complex, Kähler, with 𝑐! = 0
• Admit Ricci-flat metric, but this is not known analytically  
• Large data bases of examples (algebraic geometry)
• Topology computed in examples (algebraic geometry)
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1. Machine learning Calabi-Yau topology

• CY-related topology computable with AG, but algorithms are often costly
However
• Elements in CY databases are encoded as integer matrix 
• CY databases also list integer topological invariants  



1. Machine learning Calabi-Yau topology

• CY-related topology computable, but AG algorithms are often costly
• Elements in CY databases are encoded as integer matrix  (input)
• CY databases also list integer topological invariants  (labels)
• Nice playground for standard ML techniques

Label Prediction

… …

cat 0.92

… …

dog 0.06

… ….

Update via gradient descent to minimize loss encoding accuracy of prediction



1. Machine learning Calabi-Yau topology

• Hodge numbers
He:17, Ruehle:17, He–Lukas:20, Erbin-
et.al.:20,22, Hirst-et.al.23,...

• Topology of CY vector bundles
Klaewer–Schlechter:18, Constantin–Lukas:18, 
Brodie-et.al.:19,20, Bull-et.al.:18,19,  
ML–Schneider:19, …
à new analytical formulae for 
line bundle sum topology

• Or CY orientifolds Gao-Zou:21, 
7D G2 topology Aggarwal-et.al:23 
…

Label Prediction

h^11=8 0.99

… …

h^21=29 0.6

run all unique

1 3576 2863

2 9577 4451

3 2296 1973

4 3554 2759

5 220071 9289

total - 14374

Figure 7.1. Results of five experiments with same hyperparameter configurations but
different seed on the manifold given by configuration matrix (7.7). Note the logarith-
mic scaling on the y-axis. The plots shows the total number of found models plotted
against a global step counter.

X[8,29]
Consider the CICY given by the following configuration matrix

X [8,29] =





1 1 0 0 0 0 0 1 0 0 0
1 0 1 0 0 0 0 0 1 0 0
1 0 0 1 0 0 0 0 0 1 0
2 1 0 0 1 0 0 0 0 0 1
2 0 1 0 0 1 0 0 0 0 1
2 0 0 1 0 0 1 0 0 0 1
2 0 0 0 1 1 1 0 0 0 0
2 0 0 0 0 0 0 1 1 1 0





8,29

−42

(7.7)

Figure 7.1 shows the found models at the global time step t for five experi-
mental runs with different seeds. The plot has a logarithmic y-axis because of
a large discrepancy in models found between the different runs. Four of the
experiments find less than 104 models while the last one discovers 2.2×105.
The majority of these models are, however, not unique as shown in the table
to the right. After removing duplicates and permutations of the line bundles
the last experiment still finds more SLMs than the other experiments but now
at the same order of magnitude. The majority of models found by the other
agents are unique.

The agent corresponding to the fifth seed has developed a strategy to recover
successfully memorised solutions. The observed discrepancy in performance
for the same hyperparameters is often criticised in deep reinforcement learning
experiments [213]. It is the reason why experimental runs consisting of a set
of at least five experiments are reported rather than showing the results of a
single fortunate run [214, 215].

80
ℎ! for 𝑂 𝑚!, 𝑚" on CICY



2. ML for CY geometry: Ricci flat metrics

• Let 𝑋 be an n-dimensional compact, complex, Kähler manifold with 
vanishing first Chern class (𝑐! = 0). 
Then in any Kähler class [𝐽], 𝑋 admits a unique Ricci flat metric 𝑔"#.   

 

• Physics care about 𝑔"# but there is no analytical expression (for d>1). 
• Solve  𝑅$% 𝑔 = 0 2nd  order, non-linear PDE for 𝑔 in 6D
• Equivalent to  2nd  order PDE for function 𝜙. 

    Hard, but may solve numerically on examples
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2. ML for CY geometry: Ricci flat metrics

Kähler form 𝐽"#satisfies  
•  𝐽"# = 𝐽 + 𝑖 𝜕�̅�𝜙 same Kähler class; 𝜙 is a function
•  𝐽"# ∧ 𝐽"# ∧ 𝐽"# = 𝜅 Ω ∧ 4Ω	 Monge-Ampere equation (𝜅 constant)

      
Numerical method: 
• Sample large set of random points on CY (at fixed moduli)

• Compute Ω and reference 𝐽 at all points
• Solve MA eq. numerically for 𝐽"# (or 𝜙)  
• Check approximation: does MA eq hold and is Ricci tensor 0?
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Numerical CY metrics – a longstanding quest

• Donaldson algorithm
Donaldson:05, Douglas-et.al:06, 
Douglas-et.al:08, Braun-et.al:08, 
Anderson-et.al:10, ... 

• Functional minimization
Headrick–Nassar:13, 
Cui–Gray:20, 
Ashmore–Calmon–He–Ovrut:21, ... 

• ML methods 
Ashmore–He–Ovrut:19, 
Douglas–Lakshminarasimhan–Qi:20, 
Anderson–Gerdes–Gray–Krippendorf–
Raghuram–Ruehle:20, 
Jejjala–Mayorga–Pena:20 , 
Larfors-Lukas-Ruehle-Schneider:21, 22
Ashmore–Calmon–He–Ovrut:21,22, 
Berglund-etal:22,24 , 
Gerdes–Krippendorf:22, 
Constantin-etal:24,25, 
Hendi-Larfors-Walden:24,
Butbaia-etal:24, Ek-etal:24 …



2. ML for CY geometry: model setup & train

• Data: Sample of points 
• No labels: Know Ω and ref. 𝐽 but 

Ricci flat metric unknown 
• Encode constraints (e.g. MA 

equation)as loss function
• Train: Stochastic gradient descent

ML libraries TensorFlow, JAX, PyTorch

• When trained: NN is 𝐽"# or 𝜙
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ML works on different CYs
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Larfors ,Lukas, Ruehle,Schneider:22
Anderson, Gray, Larfors:23

Experiments using cymetric package



Application: Heterotic Standard-Like Models

Building blocks 
• Ricci-flat Calabi Yau manifold 𝑋 
• Vector bundle 𝑉 satisfying  Hermitian Yang-Mills eq.

𝐹 ∧ Ω = 0 = 𝐹 ∧ 𝐽"# ∧ 𝐽"#
• Discrete symmetry group 𝐺 (to break GUT to SM) 

• Many examples! E.g. 35 000 SLMs found with 𝑉 =⊕ 𝐿$  
Anderson et.al:11,12,13, …
.... with RL/gen.alg.   ML-Schneider:20,  Constantin et.al: 21, Abel et al:21,23,…
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Application: Heterotic Standard-Like Models

Building blocks
• Ricci-flat Calabi Yau manifold 𝑋 
• Vector bundle satisfying  HYM eq.
• Discrete symmetry 𝐺 ↝ smooth quotient CY 𝑋/𝐺
• allows to break GUT using Wilson lines
• symmetries: permutations, discrete phase rotations, shifts of input 𝑧(

• Can ML predict Ricci flat metric on quotient CY?
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ML 𝐺-invariant CY metrics

• Let 𝑋 be smooth CY, 𝐺 symmetry, 𝑔"# = 𝑔&' + 𝜕�̅�𝜙
• ML model which approximates 𝜙(𝑧) is 𝐺-invariant if
    𝜙 𝑔 ⋅ 𝑧 = 𝜙(𝑧) 
• With enough data, symmetries are learned 
• Or, use 𝐺-invariant layers to make ML model invariant
• Invariant NNs are universal approximators for invariant functions Yarotsky:22,..
• Invariant ML models can be constructed in many ways
• Geometric Deep Learning: symmetry, performance & interpretability

Bronstein et al:17,21,..

17

Hendi, Larfors, Walden:24



Invariance through non-trainable layers

G-canonicalization: 
• Invariant layers: project 

data to fund. domain
• Modular and stackable

(w. compatibility condition)
• Easily included in ML 

models for CY metrics
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input
layer G1 G2 G3

hidden layers

output
layer

Hendi, Larfors, Walden:24

Figure 6: Performance of di↵erent ML models on a 4-generation quintic. From left to right: Monge-
Ampère, Ricci, and transition loss evolution on test data; volume computed with trained metric
on all data (ground truth is 5). The upper (lower) row shows dense (spectral) networks with and
without G-canonicalization layers.

In this section, we revisit the computation of the Ricci-flat CY metric on Q using the methods
introduced in section 4. We thus encode the G-invariance as non-trainable layers in the �-model of
cymetric , and compare the performance of these invariant ML models with the standard dense
counterpart, as well as spectral networks.

We implement the canonicalization layers as follows. Let Gi ⇢ G be the subgroup generated
by the generator gi for i = 1, 2. Then, by projecting on the fundamental domains of G1 and
G2 consecutively, we construct an invariant function on X w.r.t G or, in other words, a function
on the smooth quotient Q = X/G. A technical complication, compared to the Fermat quintic
canonicalization layers of Sec. 5.1 is that we need to address the non-commutativity of G1 and
G2. This can be resolved by inserting the homogeneous canonicalization layer before the other
G-canonicalization layers; g1 and g2 commute up to homogeneous rescalings.

The fundamental domains of G1 and G2 are given by

F1 := {[z0 : z1 : z2 : z3 : z4] 2 CP4
| 8i : |z0| � |zi|}, (26)

F2 := {[z0 : z1 : z2 : z3 : z4] 2 CP4
| 0  arg(z0)  2⇡/5}. (27)

To project on the fundamental domains F1 and F2, we implement two canonicalization layers that
take the homogeneous coordinates [z0 : z1 : z2 : z3 : z4] of a point on X and for the first layer it
returns them shifted to the left such that the coordinate with the highest norm sits at the first
spot, as follows

hshift : (z0, z1, z2, z3, z4) 7!(zi, z(i+1 mod 5), z(i+2 mod 5), z(i+3 mod 5), z(i+4 mod 5)),

8j |zi| � |zj |.

For the second canonicalization layer, we find the fifth root of unity a such that 0  arg(az0)  2⇡/5
and then multiply the rest of the coordinates with successive powers of a as follows,

hFreeRootsc. : (z0, z1, z2, z3, z4) 7! (az0, a
2z1, a

3z2, a
4z3, z4).

Our experiments run over 50 epochs with the same settings as in section 5. The results on
test data are shown in Fig. 6 (we omit the training plots which are more or less identical to
the test plots). Just as observed in other experiments, including a homogeneous canonicalization
layer, or a spectral layer, reduces the transition loss. The evaluation of Monge-Ampère and Ricci
loss on test data shows that canonicalization with respect to G1, G2 reduces the losses, albeit not
by a large factor.16 The reduction of the loss is more pronounced when G-canonicalization is
added to the dense model, than when similar additions are made in the spectral network. The

16
The spikes in the Ricci loss in the second plot of the top row in Fig. 6 are transient numerical fluctuations.
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Eg: symmetric Quintic with cymetric package



3. Searching the string landscape

Two well-studied continents:
• Particle physics: heterotic SLMs 

Larfors, Schneider:20, 
Constantin, Harvey, Lukas: 21,
Abel et al:21, 23

• Cosmology: IIB strings on CY
Cole et.al:21, Krippendorf et.al: :21
Krippendorf, Liu 25, ML-Walden:in progress

• ... and many other examples
F-theory, intersecting branes, heterotic orbifolds,...

Explored with  
• reinforcement learning (RL)
• genetic algorithms
• generative models 

• NB: we want 
• exact solutions 
• clever search strategies



RL Standard-like Models from CYs Larfors, Schneider:20
Schneider PhD thesis, 2022

• Idea: agent learns to win game 
• Set-up: Heterotic SLMs
• Agent solves SLM environment
• Large number of models 
• New search strategies

• Transfer learning
• Key benefit: go beyond setups  

probed in systematic scans 
(here higher  h^11)

5 experiments, mean and variance plotted



Generative models for IIB flux vacua 

• IIB flux vacua: 
basis for KKLT and LVS scenarios
• Progress on computational tools

CYtools, JAXvacua

• Want quantized fluxes solving
• ISD conditions (F-term vanishing)
• Tadpole constraint 𝑁)*+, 

à Sample w generative models

21

ML-Walden:in progress

• E.g. using Transformer + Int2Int
Vaswani et al:17, Charton:25

• See also related work using VAE 
Krippendorf, Liu:25

Figure 5: Sampling accuracy of the transformer architecture. We sampled 10000 fluxes each by
prompting with Nflux → {4, . . . , 34}. Numerically identical samples are removed and the remaining
fluxes are used to compute the actual value of Nflux. The red line corresponds to the prompted
value and the bins reflect the distribution of samples around this value. For better readability, the
range of the x-axis has been fixed, leading to some outliers not being shown in the plots. It can
be observed that for all Nflux > 5, the actual value of Nflux is always the most sampled.
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Conclusions

ML methods help string phenomenology:
• Bypass hard computations & detect new patterns --- CY topology
• Improve numerical approximations --- CY metrics 
• Search for good vacua in (known) landscapes --- SLMs and flux vacua
• OS ML packages & trained models: 

cymetric, gymCICY, MLgeometry, cyjax, cymyc, AICY, ...



Conclusions and outlook

ML methods help string phenomenology:
• Bypass hard computations & detect new patterns --- CY topology
• Improve numerical approximations --- CY metrics 
• Search for good vacua in (known) landscapes --- particle physics/cosmology
• Applications and generalizations

• Compute quark masses Butbaia-et.al:24, Constantin-et.al:24,25
• Test Swampland distance conjecture 

Ashmore:20, Ashmore & Ruehle:21 Ahmed & Ruehle:23
• Geometry beyond CY: e.g. G-structures, G2 holonomy manifolds  

Anderson et al:20, Douglas-Platt-Qi:24
• Refined searches in string landscape (lots of methods not yet tested)
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Conclusions and outlook

ML methods help string phenomenology:
• Bypass hard computations & detect new patterns --- CY topology
• Improve numerical approximations --- CY metrics 
• Search for good vacua in (known) landscapes --- particle physics/cosmology
• Applications and generalizations

• Compute quark masses Butbaia-et.al:24, Constantin-et.al:24,25
• Test Swampland distance conjecture 

Ashmore:20, Ashmore & Ruehle:21 Ahmed & Ruehle:23
• Geometry beyond CY: e.g. G-structures, G2 holonomy manifolds  

Anderson et al:20, Douglas-Platt-Qi:24
• Refined searches in string landscape (lots of methods not yet tested)
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Thank you for listening!


